

- REPORT

Town of Needham

Department of Public Facilities 1471 Highland Avenue Needham, Massachusetts 02492 Kate Fitzpatrick

ENERGY AUDIT REPORT

of BROADMEADOW ELEMENTARY SCHOOL 120 Broad Meadow Road Needham, Massachusetts 02492

PREPARED BY:

EMG 222 Schilling Circle, Suite 275 Hunt Valley, Maryland 21031 800.733.0660 410.785.6220 (fax) www.emgcorp.com

EMG Project #: Date of Report: On site Date:

98515.11R-001.268 February 12, 2012 August 18 and 19, 2011

EMG CONTACT:

Kalyana Vadala Program Manager 800.733.0660, ext.6236 kkvadala@emgcorp.com

YOUR PARTNER IN REAL ESTATE LIFECYCLE PLANNING & MANAGEMENT www.emgcorp.com

- REPORT -

98515.11R-001.268

TABLE OF CONTENTS

1.	Certification	1
2.	Executive Summary	2
3.	Benchmarking/Energy Performance Summary	7
	3.1. Energy Star Portfolio Manager Facility Summary	7
	3.2. EPA Energy Star Rating	8
	3.3. Source Energy and Site Energy	8
4.	Introduction	9
5.	Facility Overview and Existing Conditions	
	5.1. Building Occupancy	
	5.2. Building Envelope	
	5.3. Building Heating, Ventilation, and Air-conditioning (HVAC)	
	5.4. Building Lighting	
	5.5. Building Elevators and Conveying Systems	
	5.6. Building Domestic Hot Water	
	5.7. Building Natural Gas and Electricity	15
ŝ.	Utility Analysis	
	6.1. Electricity	
	6.2. Natural Gas	
7.	Energy End Use Distribution	
и. В.	Energy Conservation Measures (ECM)	
).	8.1. ECM Calculation Assumptions	
	8.2. No/Low Cost ECM Descriptions	
	8.2.1. Lower Domestic Hot Water Temperature Set Point8.2.2. Install Timers on Rooftop Exhaust Fans	
	8.2.3. Install Low Flow Aerators in Water Faucets	
	8.2.4. Install Photo Control Sensors in Stairwells	
	8.2.5. Convert Gas Pilot Stove Top and Over to Electronic Ignition Stove Top and Oven	
	8.2.6. Install Vending Controls on Soda Machine in Teachers Lounge	
	8.2.7. Remove Linear Fluroscent 32W T8 Lamps Above Perimeter Bulkhead in Library8.2.8. Utilize Outside Air Temperature Reset Control System in Central BMS System	
	Control the Boiler	
	8.3. Capital Cost ECM Descriptions	
	8.3.1. Replace Metal Halide Lighting in Gym, Auditorium and Exterior Site Lighting	
	Induction Lights	
	8.3.2. Install PIR Motion & Occupancy Sensors Throughout the School to control	50
	lighting	20
	8.3.3. Recommision HVAC and BMS System	
	8.4. Measures Recommended for Consideration	
	8.4.1. Install VFD's on Motors on Boiler Circulation Pumps	
	8.4.2. Insulate Ceiling and Roofs	
	8.4.2. Insulate Celling and Roors	
h	8.4.4. Install Pulse or Condensing Boilers/Furnaces	
9.	Implemention of an Operations and Maintenance Plan	
10.	Appendices	35

YOUR PARTNER IN REAL ESTATE LIFECYCLE PLANNING & MANAGEMENT 800.733.0660 • <u>www.emgcorp.com</u>

EMG

REPORT

98515.11R-001.268

1. CERTIFICATION

EMG has completed an Energy Audit of Broadmeadow Elementary School located at 120 Broad Meadow Road in Needham, Massachusetts. EMG visited the site on August 18 and 19, 2011.

The assessment was performed at the Client's request using methods and procedures consistent with ASHRAE Level II Energy Audit and using methods and procedures as outlined in EMG's Proposal.

This report is exclusively for the use and benefit of the Client identified on the first page of this report. The purpose for which this report shall be used shall be limited to the use as stated in the contract between the client and EMG.

This report is not for the use or benefit of, nor may it be relied upon by any other person or entity, for any purpose without the advance written consent of EMG.

Estimated installation costs are based on EMG's experience on similar projects and industry standard cost estimating tools including *RS Means*. In developing the installed costs, EMG also considered the area correction factors for labor rates for Needham, MA. Since actual installed costs may vary widely for particular installation based on labor & material rates at time of installation, EMG does not guarantee installed costs herein. We strongly encourage the owner to confirm these cost estimates independently. EMG does not guarantee the costs savings estimated in this report. EMG shall in no event be liable should the actual energy savings vary from the savings estimated herein.

EMG certifies that EMG has no undisclosed interest in the subject property and that EMG's employment and compensation are not contingent upon the findings or estimated costs to remedy any deficiencies due to deferred maintenance and any noted component or system replacements.

Any questions regarding this report should be directed to Kalyana Vadala at 800.733.0660, ext. 6236.

Prepared by:

Luke Jacques Energy Auditor Project Manager

Reviewed by:

Kalyana Vadala Program Manager

REPORT

2. EXECUTIVE SUMMARY

The purpose of this Energy Audit is to provide the Town of Needham and Broadmeadow Elementary School with a baseline of energy usage and the relative energy efficiency of the facility and specific recommendations for Energy Conservation Measures. Information obtained from these analyses may be used to support a future application to an Energy Conservation Program, Federal & Utility grants towards energy conservation, support performance contracting, justify a municipal bond funded improvement program, or as a basis for replacement of equipment or systems.

The school property has one, 2-story building containing 78,592 square feet consisting of offices, classrooms, auditorium, cafeteria, gym, mechanical and storage rooms. The site area is approximately 7 acres. Construction of the property was completed in 2001.

The study included a review of the building's construction features, historical energy, review of the building envelope, HVAC equipment, heat distribution systems, lighting, and the building's operational and maintenance practices.

Broadmeadow Elementary School currently has a central BMS system controlling the HVAC systems at the school.

Summary of Existing Energy Performance

Building's Annual Energy Consumption	6,269,345 kBtu
Total Annual Energy Costs	\$203,629

EMG has identified 11 Energy Conservation Measures (ECMs) for this property. The savings for each measure are calculated using standard engineering methods followed in the industry, and detailed calculations for ECM are provided in Appendix G for reference. A 10% discount in energy savings was applied to account for the interactive effects amongst the ECMs. In addition to the consideration of the interactive effects, EMG has applied a 15% contingency to the implementation costs to account for potential cost overruns during the implementation of the ECMs.

98515.11R-001.268

The following table summarizes the recommended ECMs in terms of description, investment cost, energy consumption reduction, and cost savings.

Item	Estimate
Total Projected Initial ECM Investment	\$74,035 (In Current Dollars)
Estimated Annual Cost Savings Related to ECMs	\$28,495 (In Current Dollars)
Net Effective ECM Payback	2.60 years
Estimated Annual Energy Savings	14%
Estimated Annual Cost Savings	14%

Summary of Financial Information for Recommended Energy Conservation Measures

List of Recommended Energy Conservation Measures For Broadmeadow School										
ECM #	Description of ECM	Projected Initial Investment	Estimated Annual Energy Savings				Estimated Annual Water Savings	Total Energy Savings	Total Estimated Annual Cost Savings	Simple Payback
			Natural Gas	Electricity						
		\$	Therms	kWh	kgal	MMB tu	\$	Years		
No/Low	Cost Recommendations									
	Lower Domestic Hot water Temperature Set-Points									
	Details : Reduce Water Temp. for Building From 132 Deg. F to 120 Deg. F	\$0	1,075	0	0	107	\$1,162	0.00		
	Replace High Flow Faucet Aerators To Low Flow Faucet Aerators Details : Replace 2.2 GPM Aerators w/ 1 GPM Aerators in All Bathroom S inks	\$111	37	0	3	4	\$66	1.67		
3	Install Automatic Lighting Controls	¢126	\$126	\$126 0	0	5.805	0	20	\$1,163	0.11
5	Details : Use Photo sensors in 2 Main Stairwells	\$120	0	3,803	0	20	\$1,105	0.11		
4	Convert Gas Pilot Stoves To Electronic Ignition Stoves	\$158	34	0	0	3	\$37	4.30		
	Details : Add to Kitchen S tove and Oven Unit									
5	Install Energy Savers on Vending, Snack Machines	\$200	0	1,610	0	5	\$323	0.62		
	Details : Soda <i>M</i> achine in Faculty Lounge			,	-					
	Reduce Light Levels By Delamping of Lamps	* 22 =					A			
6	Details : Remove excess lamps above perimeter bulkhead in Main Room in the Library	\$205	0	7,363	0	25	\$1,475	0.14		
7	Install Timers On Rooftop Exhaust Fans	\$379	0	1 5 4 7	0	5	\$310	1.22		
7	Details : R es troom E xhaus t F ans	\$379	\$379 0	0 1,547	1,547 0	5	\$310	1.22		
	Install Outside Air (OA) Temperature Reset Controls for Hot Water Boilers			2.107	0	0	211	¢2.261	0.10	
8	Details : Utilize Outside Air Reset in Central B <i>M</i> S HVAC Control System	\$645	3,107	U	0	311	\$3,361	0.19		
	Totals for No/Low Cost Items	\$1,825	4,253	16,325	3	481	\$7,897	0.23		

YOUR PARTNER IN REAL ESTATE LIFECYCLE PLANNING & MANAGEMENT

800.733.0660 • <u>www.emgcorp.com</u>

List of Recommended Energy Conservation Measures For		Broadmeadow School								
ECM #	Description of ECM	Projected Initial Investment	Estimated Annual Energy Savings		• •		Estimated Annual Water Savings	Total Energy Savings	Total Estimated Annual Cost Savings	S imple Payback
			Natural Gas	Electricity						
		\$	Therms	kWh	kgal	MMB tu	\$	Years		
Capital	Cost Recommendations									
1	Replace High Intens ity Discharge Lamp (HID) with Induction Lighting Details : Outs ide Pole Lights , Gym Lights , and Auditorium Lights	\$9,784	0	20,369	0	69	\$4,267	2.29		
2	Install Automatic Lighting Controls Details : Install Motion & Occupancy Sensors throughout building	\$22,120	0	65,690	0	224	\$13,160	1.68		
3	Retro-Commission The Building HVAC & Control System Details: Balance Flows and Verify Proper Operation of all Equipment	\$30,650	1,554	23,250	0	235	\$6,338	4.84		
	Total For Capital Cost	\$62,554	1,554	109,309	0	528	\$23,764	2.63		
	Interactive Savings Discount @ 10%		-581	-12,563		-101	-\$3,166			
	Total Contingency Expenses @ 15%	\$9,657								
Total for	Improvements	\$74,035	5,226	113,071	3	908	\$28,495	2.60		

YOUR PARTNER IN REAL ESTATE LIFECYCLE PLANNING & MANAGEMENT 800.733.0660 • www.emgcorp.com

Apart from the above recommended measures, EMG has analyzed the following three measures for consideration and long term capital planning. These measures are not recommended at the current time due to high initial investment and long payback yielding negative life cycle savings, but recommend for at time of equipment replacement.

Deta	Detailed List of Measures Evaluated For Consideration For Broadmeadow School											
ECM#	Description of ECM	Initial Investment	Annual Energy Savings		Annual Energy Savings		stment Annual Energy Savings		Annual Water S avings	Total Energy Savings	Total Estimated Annual Cost Savings	Payback
		\$	Therms	kWh	kgal	MMB tu	\$	Years				
	Install Variable Frequency Drives (VFD)											
1	Details : on (2) 10 Hp Boiler Hot Water Recirculation Pumps	\$10,469	0	18,124	0	62	\$3,631	2.88				
2	Improve Insulation Levels in Attic	- \$38,000	¢20.000		00.4	0	50	*- 05	40.42			
2	Details : Add Insulation to Ceiling of Auditorium, Cafeteria, and Gym		554	884	0	58	\$785	48.43				
	Replace Inefficient Heating Plant											
3	Details: Add one 3,200 MBH/97% E ff. High E fficiency Condens ing Boiler as Primary Boiler at time of replacement	\$86,800	2777	0	0	278	\$3,153	27.53				
4	Replace Existing RTUs with High Efficiency Units with Variable Speed Oil Free Compressors Details: Install High Efficiency units at time of replacement	\$440,000	0	98000	0	334	\$20,221	\$22				
Total for I	Improvements	\$575,269	3331	117008	0	732	\$27,790	20.70				

YOUR PARTNER IN REAL ESTATE LIFECYCLE PLANNING & MANAGEMENT 800.733.0660 • www.emgcorp.com

REPORT -

3. BENCHMARKING/ENERGY PERFORMANCE SUMMARY

3.1. ENERGY STAR PORTFOLIO MANAGER FACILITY SUMMARY

EMG uses the Portfolio Manager tool developed by the Federal Environmental Protection Agency to track relative energy uses of buildings by property type. This tool allows the input of a facility's historic utility data to be compared with normalized data of a large database of its peer facilities.

Facility Needham: Broadmeadow School Facility Owner N/A Primary Contact for this Facility Bill Champion 222 Schilling Circle Suite 275 Hunt Valley, MD 21031

General Information

120 Broadmeadow Road Needham, MA 02492

Needham: Broadmeadow School					
Gross Floor Area Excluding Parking: (ft ²) 78,592					
Year Built	2001				
For 12-month Evaluation Period Ending Date:	June 30, 2011				

Facility Space Use Summary

School					
Space Type	K-12 School				
Gross Floor Area(ft2)	78,592				
Open Weekends?	No				
Number of PCs ^d	138				
Number of walk-in refrigeration/freezer units	2				
Presence of cooking facilities ⁴	Yes				
Percent Cooled	80				
Percent Heated ^d	100				
Months [®]	N/A				
High School?4	No				
School District ^o	N/A				

Energy Performance Comparison

	Evaluation Periods		Comparisons			
Performance Metrics	Current (Ending Date 06/30/2011)	Baseline (Ending Date 06/30/2011)	Rating of 75	Target	National Median	
Energy Performance Rating	38	38	75	N/A	50	
Energy Intensity	Energy Intensity					
Site (kBtu/ft²)	80	80	57	N/A	73	
Source (kBtu/ft2)	167	167	118	N/A	151	
Energy Cost						
\$/year	\$ 200,044.70	\$ 200,044.70	\$ 140,988.62	N/A	\$ 180,301.32	
\$/ft²/year	\$ 2.55	\$ 2.55	\$ 1.80	N/A	\$ 2.30	
Greenhouse Gas Emissions						
MtCO ₂ e/year	500	500	352	N/A	451	
kgCO ₂ e/ft²/year	6	6	4	N/A	5	

YOUR PARTNER IN REAL ESTATE LIFECYCLE PLANNING & MANAGEMENT 800.733.0660 • www.emgcorp.com

EMG

REPORT

98515.11R-001.268

3.2. EPA ENERGY STAR RATING

The national energy performance rating is a type of external benchmark that helps energy managers to assess how efficiently their buildings use energy, relative to similar buildings nationwide. The rating system's 1-100 scale allows everyone to understand quickly how a building is performing. For example, a rating of 50 indicates an average energy performance, while a rating of 75 or better indicates top performance. The higher the rating, the better the building is performing. Organizations can evaluate energy performance among the buildings in their portfolio, while also comparing their performance with other similar buildings nationwide. Additionally, building owners and managers can use the performance ratings to help identify buildings that offer the best opportunity for energy improvement and recognition.

To receive the energy performance rating, facility-related data entered into the Portfolio Manager, must adhere to a series of operating and energy use conditions. If one or more of these conditions are not met, the facility will receive "N/A" (Not Available) as a rating. "NA" means that the Portfolio Manager is unable to calculate a rating for that particular period ending date, given the operating and energy use conditions provided.

A building must obtain a rating of 75 or better to be eligible to apply for the Energy Star Certification. However, a rating of 75 does not necessarily mean that a building will qualify.

3.3. SOURCE ENERGY AND SITE ENERGY

Buildings use a variety of forms of energy, including electricity, natural gas, fuel oil, and district steam. In order to provide an un-biased rating, the methodology must add together all of the energy used in a building. To combine energy in an equitable way, the ratings use source energy. Source energy is the energy that is consumed at the site, in addition to the energy used in generation and transmission.

The purpose of the conversion from site energy to source energy is to provide an equitable assessment of building-level energy efficiency. Because billed site energy use includes a combination of primary and secondary forms of energy, a comparison using site energy does not provide an equivalent thermodynamic assessment for buildings with different fuel mixes. In contrast, source energy incorporates all transmission, delivery, and production losses, which accounts for all primary fuel consumption and enables a complete assessment of energy efficiency in a building. When source energy is used to evaluate energy performance, an individual building's performance does not receive either a credit or a penalty for using any particular fuel type.

REPORT

98515.11R-001.268

4. INTRODUCTION

The purpose of this Energy Audit is to provide Broadmeadow Elementary School with a baseline of energy usage, the relative energy efficiency of the facility, and specific recommendations for Energy Conservation Measures. Information obtained from these analyses may be used to support a future application to an Energy Conservation Program, Federal and Utility grants towards energy conservation, as well as support performance contracting, justify a municipal bond-funded improvement program, or as a basis for replacement of equipment or systems.

The energy audit consisted of an on site visual assessment to determine current conditions, itemize the energy consuming equipment (i.e. Boilers, roof-top-cooling units (RTU), DHW equipment); review lighting systems both exterior and interior; and review efficiency of all such equipment. The study also included interviews and consultation with operational and maintenance personnel. The following is a summary of the tasks and reporting that make up the Energy Audit portion of the report.

The following is a summary of the tasks and reporting that make up the Energy Audit portion of the report.

ENERGY AND WATER USING EQUIPMENT

 EMG has surveyed the common areas, office areas, classrooms, maintenance facilities and mechanical rooms to document utility-related equipment, including heating systems, cooling systems, air handling systems and lighting systems.

BUILDING ENVELOPE

• EMG has reviewed the characteristics and conditions of the building envelope, checking insulation values and conditions. This review also includes an inspection of the condition of walls, windows, doors, roof areas, insulation and special use areas. Where we anticipated significant losses, we utilized infrared thermographs to analyze heat loss across the envelope.

RECOMMENDATIONS FOR ENERGY SAVINGS OPPORTUNITIES

 Based on the information gathered during the on site assessment, the utility rates, as well as recent consumption data and engineering analysis, EMG has identified opportunities to save energy and provide probable construction costs, projected energy/utility savings and provide a simple payback analysis.

ANALYSIS OF ENERGY CONSUMPTION

Based on the information gathered during the on site assessment and a minimum of one year of utility billing history, EMG has conducted an analysis of the energy usage of all equipment, and identified which equipment is using the most energy and what equipment upgrades may be necessary. As a result, equipment upgrades or replacements are identified that may provide a reasonable return on the investment and improve maintenance reliability.

ENERGY AUDIT PROCESS

- Interviewing staff and review plans and past upgrades
- Performing an energy audit for each use type
- Performing a preliminary evaluation of the utility system
- Analyzing findings, utilizing ECM cost-benefit worksheets
- Making preliminary recommendations for system energy improvements and measures
- Estimating initial cost and changes in operating and maintenance costs based on implementation of energy efficiency measures
- Ranking recommended cost measures, based on the criticality of the project and the largest payback

REPORTING

The EMG Energy Audit Report includes:

- A comprehensive study identifying all applicable Energy Conservation Measures (ECMs) and priorities, based on initial cost and payback
- A narrative discussion of building systems/components considered and a discussion of energy improvement options;
- A summary of ECMs including initial costs and simple payback based on current utility rates and expected annual savings.

- REPORT

5. FACILITY OVERVIEW AND EXISTING CONDITIONS

5.1. BUILDING OCCUPANCY

Typically, 650 students & 90 staff occupy the facility during normal operating hours. After hours occupants include approximately 30 people. School is generally occupied 100% in winter and 30% in summer. The Gym is open until 10PM everyday M-F during winter.

	Hours Open to the Public	Hours Open to Employees
Monday-Friday (Winter)	8 AM-5 PM	6 AM-10 PM
Saturday/Sunday (Gym only in winter)	8 AM-6 PM	
Summer (Gym only)	6 AM-8 AM everyday	

Summary of Facility Operating Hours

5.2. BUILDING ENVELOPE

The building envelope consists of the exterior shell, made up of the walls, windows, roof, and floor. The envelope provides building integrity and separates the exterior from the interior conditioned space.

Based on actual facility architectural drawings provided, the foundations consist of cast-in-place concrete perimeter wall footings with CMU foundation walls. The foundation systems include reinforced concrete column pads. The building has load-bearing, concrete masonry unit walls and interior steel columns. The upper floors and roofs are constructed with steel reinforced concrete with metal decking. The building structure appears to be in good condition.

The School has a 4 Ply Built-Up Pitched Roofing System with flood coat and aggregate surfacing. The builtup roof is over 2 ½" of polyisocyanurate insulation board. The roofs are in fair condition.

The exterior walls are concrete masonry units with 2 inches of rigid insulation in the air gap between the block interior and brick veneer exterior. The entry doors are commercial double pane steel doors in steel frames. All of the doors appear to be in good operating order although the door threshold seals on some of the exit doors (North End) have deteriorated weather seals indicating air leakage.

The following table describes the observed or reported insulation levels at the property:

Item	Construction Type
Foundation	Continuous Reinforced Concrete Slab
Structure	Block with Steel Substructure and Concrete Decks
Exterior Walls	Brick/tile veneer/6" fiberglass batt on metal studs/5/8 th in. gyp board
Roof	4 Ply Built-Up Pitched Built-Up-Roofing System with flood coat and aggregate surfacing

The following table describes the insulation levels of different surfaces at the property based on provided facility drawings:

Building Element	Estimated Insulation
Roof	R – 20
Floors	R – 30
Walls Above Grade	R – 19.3

5.3. BUILDING HEATING, VENTILATION AND AIR-CONDITIONING (HVAC)

Heating is provided by two Weil-McLain "Series 88" cast iron sectional gas-fired hot water boilers operating in the lead-lag mode. The boilers were installed in 2001 during the original construction of the building and are in good condition. These are standard efficiency units with manufacturer rated values of 85.6% thermal efficiency and 72.2% IBR efficiency. The boilers are operational during the winter months and are turned off in summer. Based on facility natural gas profile, the boilers are operational from October through May. Hot water is circulated throughout the building by two 10 HP recirculation pumps. The hot water from the boilers is supplied to the baseboard hydronic heating system located along the exterior walls and the reheat coils in the VAV boxes located throughout the building. Currently the pumps do not have Variable Frequency Drive (VFD) controllers and run at constant speed all the time with the flow regulated by 3-Way valves in the hydronic coils in VAV boxes and perimeter radiators. The boilers have a water treatment system to maintain the water at its optimal pH level and prevent premature wear on pipes and boilers. The overall condition and maintenance of boiler/burner, pumps and piping is good. Opportunities exist to add one 3200 MBH condensing natural gas-fired boiler and operate it as primary boiler to carry the school majority of the season and use the existing boiler system as pure back-up as peak support system during extreme days.

- REPORT

The building is pre-heated and cooled by five McQuay Roof Top Packaged Units ranging in size from 40 to 90 tons. The roof top units are equipped with natural gas furnaces, DX coils, and several with CO₂ sensors. The CO₂ sensors regulate the amount of outside air introduced into the spaces based on occupancy. Most units are also equipped with VFD's on the supply and return fans. Though the overall condition of the roof top units is good, these units currently have only five (5) years of remaining useful life per ASHRAE Expected useful Life (EUL) chart. So retrofits on these units is not cost feasible at this time. But EMG recommends during the replacement that these units be replaced with high efficiency variable speed magnetic compressor driven units with COP of 12 or higher. The data/server rooms are cooled by two 3 ½ ton mini-split system air-conditioning units ranging in size from 1 to 3 tons.

Air is circulated throughout the building via air ducts supplied by the McQuay roof top units. The temperature in the classrooms and offices is controlled by perimeter hydronic radiators and VAV boxes w/reheat coils in the ceilings controlled by individual thermostats that are tied into an off site central Building Automation System, Invensys Network 8000 DDC control system.

Currently the buildings occupied/un-occupied set points for cooling are 75°F/85°F and for heating are 68°F/58°F. The control system appears to be properly commissioned and well maintained.

The Mechanical Equipment Schedule in Appendix E contains a summary of the HVAC Equipment at the property.

Item	Measured Values
	2 Boilers for Hydronic heating (3,270
	MBH ea.) and 5 gas-fired furnaces on
Major Heating system type/capacity	RTU's for forced hot air (1000-1750 MBH)
Major Cooling System type/capacity	5 RTU's with DX Coils (40-90 Ton)
	140°F before mixing valve, 132°F after
Heating hot water supply temperature	mixing valve
Outside Air temperature & Relative	
Humidity (%) at time of audit	85°F, 36% RH
Interior space temperatures & Relative	
Humidity (RH%)	75°F,36% RH
Supply Air Temperature (SAT)/Return	Supply Air Temperature: 66°F Return Air
Air Temperature (RAT)	Temperature: 75°F
Avg. Supply Air rate (CFM/Sq.ft)	0.78 CFM/Sq. ft
Avg. Interior space thermostat set-	
point	75°F
Avg. Outside Air rate (% & CFM/Sq.ft or	0% Outside Air, Dampers Closed at time
CFM/person)	of audit

The Mechanical Equipment Schedule in Appendix E contains a summary of the HVAC Equipment at the property.

5.4. BUILDING LIGHTING

Interior lighting in the classrooms, offices, cafeteria, library, bathrooms, hallways, storage, and utility rooms are primarily lit by 2 bulb, 32 watt, T8 fluorescent light fixtures with electronic ballasts. Areas throughout the school are also lit with 3 bulb, 32 watt, T8 fluorescent light fixtures, 2 bulb 26 watt 4-pin quad-tube recessed light fixtures, and 2 bulb indirect lights with 40 watt compact fluorescent tubes.

The gym uses 400 watt metal halide light fixtures. It is being recommended to convert the 400 watt metal halide to 200 watt induction bulbs. The auditorium uses a combination of 100w metal halide and 90 watt halogen light fixtures for the overhead lighting. It is being recommended to convert the 100 watt metal halide to 35 watt LED fixtures, and convert the 90 watt halogen bulbs to 26 watt fluorescent flood lights.

The lighting in the building is controlled predominantly by two-way manual switches. The office in the health suite is the only room in the whole school that is equipped with a motion sensor to control the lighting. New style passive infrared motion sensors not only detect motion but also body heat. EMG recommends installing dual technology wall-mounted motion sensors in all rooms including storage rooms, electrical panel rooms, and bathrooms and ceiling-mounted occupancy sensors for all offices and classrooms.

Site lighting is provided by property-owned 200 & 400 watt metal halide light poles and 2 bulb 26 watt CFL wall pack light fixtures. It is being recommended to convert the 200 watt and 100 watt metal halide to 100 watt and 50 watt induction bulbs respectively. Exterior lighting remains on from 4:00 PM through 11:00 PM and 6:00 AM through 7:30 AM.

Space type	Measured Light Levels (Lux/foot candles)	ASHRAE/IESNA Recommended Levels (foot candles)				
Classroom	420 Lux/39 FC	30				
Office	550 Lux/51 FC	50				
Auditorium	290 Lux/27 FC	10				
Gym	610 Lux/57 FC	60				
Restroom	600 Lux/56 FC	10				
Avg. Building Lighting Density, W/Sq.Ft	1.92 W/Sq.Ft	1.2 W/Sq.Ft				

Note: 1 foot candle = 10.764 lux

The Lighting Systems Schedules in Appendix F contain a summary of the Existing Lighting Systems at the property, along with proposed Lighting Energy Conservation Measures.

5.5. BUILDING ELEVATORS AND CONVEYING SYSTEMS

There is one hydraulic service elevator. The elevator has a rated capacity of 3,500 pounds. The elevator machinery is located in a room adjacent to the shaft on the ground floor. The elevator is powered by a 25 HP submersible hydraulic pump.

YOUR PARTNER IN REAL ESTATE LIFECYCLE PLANNING & MANAGEMENT 800.733.0660 • www.emgcorp.com

REPORT

5.6. BUILDING DOMESTIC HOT WATER

The water meter is located in the boiler room.

One 400-gallon gas-fired water heater supplies domestic hot water to the building. The water heater is located in the boiler room. The 140 Deg F water from the hot water heater passes through a mixing valve assembly to provide 132 Deg F water to the bathrooms and sinks in the school. The hot water is circulated through the building with 3 1/8 hp pipe mounted circulation pumps. It is being recommended to turn the temperature of the water at the mixing valve back to 120 Deg F. Also in summer months when school is rarely occupied, it may also be considered to completely turn off the water heater or drop the set point further to 100 Deg F or lower. This will save both natural gas consumption to heat water as well as pumping energy costs.

The common area restrooms have commercial-grade fixtures and accessories, including water closets and lavatories. The toilets consist of 1.6 GPF flush valves. The flush volume of the urinals is 3.5 GPF. The lavatories are equipped with aerators rated at 2.2 GPM. The lavatories are operated by automatic controls.

DHW type	Natural Gas
Storage Tank Capacity	400-gallon
Heating/tank set-point	140 Deg F
DHW temperature at	
faucet	132 Deg F
Building faucets, GPM	2.2 GPM
Water closets/toilets, GPF	1.6 GPF

5.7. BUILDING NATURAL GAS AND ELECTRICITY

The building is connected to the natural gas utility (Nstar). The gas main on the adjacent public street supplies the natural gas service. The gas meter and regulators are located in a vault in front of the building. The gas distribution piping within the building is malleable steel (black iron). The facility is master-metered for natural gas.

The electrical supply lines run underground pad-mounted transformer to an interior-mounted electrical meter. The main electrical service size is 2,000 amps, 480/277-volt, three-phase, four-wire alternating current (AC). A step-down transformer is located in the main electrical room. The electrical wiring is copper, installed in metallic conduit. Circuit breaker panels are located throughout the building. The facility is master-metered for electricity.

A natural gas-engine-driven 750 kVA emergency electrical generator is located in a room inside of the boiler room. The generator provides back-up power for elements of the fire and life safety systems. The generator is powered by natural gas.

ENERGY AUDIT

Electrical Transformer Type (Wye, Delta)	Delta
Mounting	Pad-mounted
Location	Front of School by Parking Lot
Main Building Electric service	Receptacles, Emergency Systems and Lights
Primary Volts	480 V
Secondary Volts	277 V
Phase	3
Wire	4
Amp	Unknown
On site Generator (Y/N)	γ
Generator Capacity, KVA	750
Generator Fuel Type	Natural Gas

Electric Meter type (Master/Sub/Direct)	Master	Natural Gas Meter type (Master/Sub/Direct)	Master	
Meter Location	Electric Room	Meter Location	Street Vault	
Main meter number	08503030	Main meter number	Unknown	

REPORT

6. UTILITY ANALYSIS

Establishing the energy baseline begins with an analysis of the utility cost and consumption of the building. Utilizing the historical energy data and local weather information, we evaluate the existing utility consumption and assign it to the various end-users throughout the buildings. The Historical Data Analysis breaks down utilities by consumption, cost and annual profile.

This data is analyzed, using standard engineering assumptions and practices. The analysis serves the following functions:

- Allows our engineers to benchmark the energy and water consumption of the facilities against consumption of efficient buildings of similar construction, use and occupancy.
- Generates the historical and current unit costs for energy and water
- Provides an indication of how well changes in energy consumption correlate to changes in weather.
- Reveals potential opportunities for energy consumption and/or cost reduction. For example, the analysis
 may indicate that there is excessive, simultaneous heating and cooling, which may mean that there is an
 opportunity to improve the control of the heating and cooling systems.

By performing this analysis and leveraging our experience, our engineers prioritize buildings and pinpoint systems for additional investigation during the site visit, thereby maximizing the benefit of their time spent on site and minimizing time and effort by the customer's personnel.

Based upon the utility information provided about the Broadmeadow Elementary School, the following energy rates are utilized in determining existing and proposed energy costs.

Utility Rates used for Cost Analysis

Electricity (Blended Rate)	Natural Gas	Water / Sewer
\$0.20/kWh	\$1.08 /therm	\$9.00 /kGal

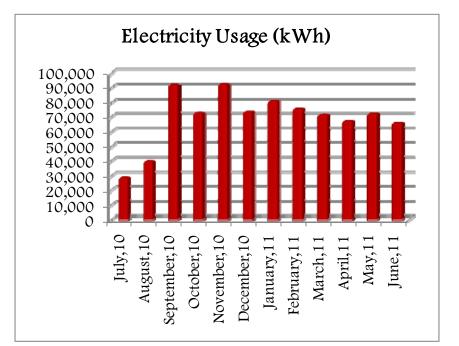
The data analyzed provides the following information: 1) breakdown of utilities by consumption, 2) cost and annual profile, 3) baseline consumption in terms of energy/utility at the facility, 4) the Energy Use Index, or Btu/sq ft, and cost/sq ft. For multiple water meters, the utility data is combined to illustrate annual consumption for each utility type.

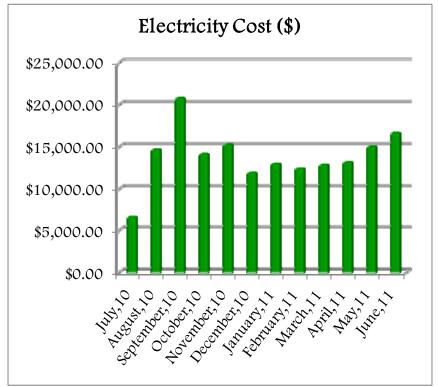
REPORT ·

6.1. ELECTRICITY

Nstar satisfies the electricity requirements of the facility. The rise in the electricity usage during the summer months is due to the use of electric driven air-conditioning equipment. The lighting is a large component of the electrical base-load because of both the number and inefficiency of fixtures and bulbs. The kitchen appliances, computers, and copying machines also add significant amounts to the base-load.

Based on the 2010-11 electric usage & costs, the average price paid during the year was \$0.20 per kWh. The total annual electricity consumption for the 12-month period analyzed is 831,080 for a total cost of \$166,491.


Electricity Consumption and Cost Data


Start Date	Electricity Consumption (kWh)	Unit Cost/kWh	Total Cost	
July,10	28,580	\$0.23	\$6,636.00	
August,10	39,480	\$0.37	\$14,648.00	
September,10	91,880	\$0.23	\$20,820.00	
October,10	72,500	\$0.19	\$14,101.00	
November,10	92,280	\$0.17	\$15,274.00	
December,10	73,240	\$0.16	\$11,870.00	
January,11	81,000	\$0.16	\$13,018.00	
February,11	75,460 \$0.16		\$12,431.00	
March,11	71,140	\$0.18	\$12,876.00	
April,11	67,400	\$0.20	\$13,184.00	
May,11	71,940	\$0.21	\$15,017.00	
June,11	66,180	\$0.25	\$16,616.00	
Total	831,080	\$0.20	\$166,491.00	

REPORT

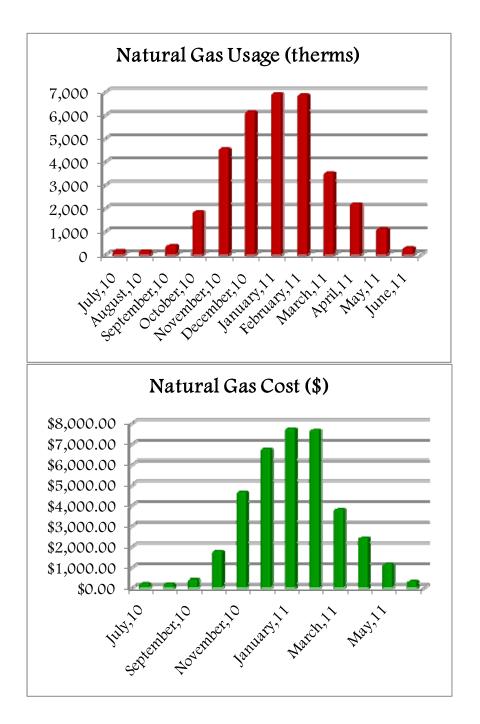
98515.11R-001.268

YOUR PARTNER IN REAL ESTATE LIFECYCLE PLANNING & MANAGEMENT 800.733.0660 • www.emgcorp.com

REPORT -

6.2. NATURAL GAS

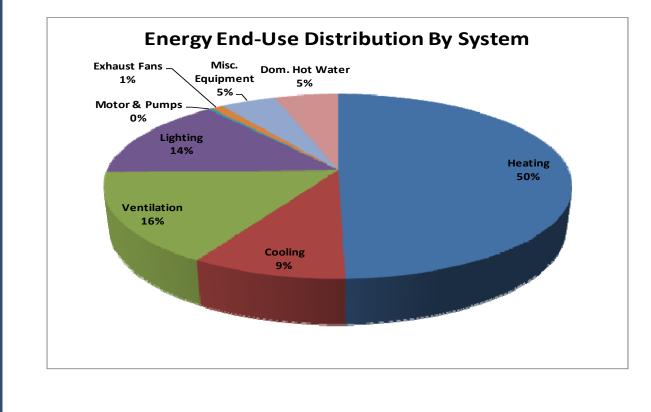
The natural gas requirements of the facility are satisfied by Nstar. The rise in the natural gas usage during the winter months is due to the use of natural gas driven heating equipment. The base-load for the building consists of the domestic hot potable water boiler along with some of the kitchen appliances.


Based on the 2010-11 natural gas usage & costs, the average price paid during the year was \$1.07 per therm. The total annual natural gas consumption for the 12-month period analyzed is 34,840 for a total cost of \$37,137.

Natural Gas Consumption and Cost Data

Start Date	Natural gas Consumption (Therms)	Unit Cost/therm	Total Cost	
July,10	185	\$1.16	\$219.00	
August,10	176	\$1.16	\$209.00	
September,10	417	\$0.97	\$412.00	
October,10	1,840	\$0.93	\$1,758.00	
November,10	4,587	\$1.00	\$4,653.70	
December,10	6,155	\$1.08	\$6,739.00	
January,11	6,926	\$1.10	\$7,721.00	
February,11	6,872	\$1.10	\$7,648.00	
March,11	3,546	\$1.07	\$3,836.00	
April,11	2,200	\$1.09	\$2,440.00	
May,11	1,122	\$1.02	\$1,160.00	
June,11	311	\$1.08	\$342.00	
Total	34,337	\$1.08	\$37,137.70	

- REPORT


REPORT

7. ENERGY END USE DISTRIBUTION

Following table shows the annual end-use energy distribution by component for FY 2011 (base year) for Broadmeadow School.

	kWh	Therms	kBtu	% of Total
Heating		31,072	3,107,200	50%
Cooling	168,000		573,216	9%
Ventilation	292,395		997,651	16%
Lighting	263,325		898,465	14%
Motor & Pumps	6,266		21,381	0.3%
Exhaust Fans	17,378		59,294	1%
Misc. Equipment	83,716		285,639	5%
Dom. Hot Water		3,265	326,500	5%
Total	831,080	34,337	6,269,345	100%

note: FY 2011 (July 2010 - June 2011) is used as baseline year for analysis

REPORT

8. ENERGY CONSERVATION MEASURES (ECM)

EMG has identified a total of 15 Energy Conservation Measures (ECMs) for this property. All the ECMs are broken into two major categories:

1. **No/Low Cost Recommendations**: No/Low cost is defined as any project with initial investment of less than \$1,000

2. **Capital Cost Recommendations**: Capital cost defined as any project with initial investment greater than \$ 1,000

EMG screens ECMs using two financial methodologies. ECMs which are considered financially viable must meet both criteria.

1. <u>Simple Payback Period</u> –The number of years required for the cumulative value of energy or water cost savings less future non-fuel or non-water costs to equal the investment costs of the building energy or water system, without consideration of discount rates. ECMs with a payback period greater than the Expected Useful Life (EUL) of the project are not typically recommended, as the cost of the project will not be recovered during the lifespan of the equipment. These ECMs are recommended for implementation during future system replacement. At that time, replacement may be evaluated based on the premium cost of installing energy efficient equipment.

$$Simple Payback = \frac{Initial Cost}{Annual Savings}$$

2. <u>Savings-to-Investment Ratio (SIR)</u> – The savings-to-investment ratio is the ratio of the present value savings to the present value costs of an energy or water conservation measure. The numerator of the ratio is the present value over the estimated useful life (EUL) of net savings in energy or water and non-fuel or non-water operation and maintenance costs attributable to the proposed energy or water conservation measure. The denominator of the ratio is the present value of the net increase in investment and replacement costs less salvage value attributable to the proposed energy or water conservation measure. It is recommended that energy efficiency recommendations should be based on a calculated SIR, with larger SIRs receiving a higher priority. A project is typically only recommended if SIR is greater than or equal to 1.0, unless other factors outweigh the financial benefit.

$$SIR = \frac{Present Value (Annual Savings, i\%, EUL)}{Initial Cost}$$

Key Metrics to Benchmark the Subject Property's Energy Usage Profile

- <u>Building Site Energy Use Intensity</u> The sum of the total site energy use in thousand of Btu per unit of gross building area. Site energy accounts for all energy consumed at the building location only not the energy consumed during generation and transmission of the energy to the site.
- <u>Building Source Energy Use Intensity</u> The sum of the total source energy use in thousand of Btu per unit of gross building area. Source energy is the energy consumed during generation and transmission in supplying the energy to your site.
- <u>Building Cost Intensity</u> This metric is the sum of all energy use costs in dollars per unit of gross building area.

98515.11R-001.268

Greenhouse Gas Emissions - Although there are numerous gases that are classified as contributors to the total for Greenhouse Emissions, the scope of this energy audit focuses on carbon dioxide (CO₂). Carbon dioxide enters the atmosphere through the burning of fossil fuels (oil, natural gas, and coal), solid waste, trees and wood products, and also as a result of other chemical reactions (e.g., manufacture of cement).

ENERGY AUDIT REPORT

Site Energy Use Intensity (EUI)	Rating	
Current S ite E nergy Use Intensity (E UI)	80	kBtu/ft2
Post ECM Site Energy Use Intensity (EUI)	68	kBtu/ft2
Source Energy Use Intensity (EUI)	Rating	
Current Source Energy Use Intensity (EUI)	166	kBtu/ft2
Post ECM Source Energy Use Intensity (EUI)	143	kBtu/ft2
Building Cost Intensity (BCI)	Rating	
Current Building Cost Intensity	2.59	/ft2
Post ECM Building Cost Intensity	2.23	/ft2

Summary of the Greenhouse Gas Reductions from Recommended Energy Conservation Measures

The following table provides a summary of the projected Greenhouse Gas Emissions reductions as a result of the recommended Energy Conservation Measures:

Greenhouse Gas Emissions Reduction	Rating	
Estimated kWh Reduction	113,071	kWh
Estimated Annual Thermal Energy Reduction	5,226	Therms
Total CO ₂ E missions Reduced	48	MtCO ₂ /yr
Total Cars Off The Road (Equivalent)*	9	
Total Acres of Pine Trees Planted (Equivalent)*	11	

*Equivalent reductions per DOE emissions calculation algorithms.

The following table describes each recommended ECM in terms of initial investment, electricity and natural gas savings, water savings, annual energy cost and maintenance savings, payback and SIR

List	of Recommended Energy Conservation N	leasures For	Broadmea	dow Schoo	ol								-	
ECM#	Description of ECM	Projected Initial Investment	Estimated An Savi	<i>.</i>	Estimated Annual Water Savings	Total Energy Savings	Estimated Cost Savings	Estimated Annual O&M Savings	Total Estimated Annual Cost Savings	S imple Payback	S.I.R.	Life Cycle Savings	Expected Useful Life (EUL)	
			Natural Gas	Electricity										
		\$	Therms	kWh	kgal	MMB tu	\$	\$	\$	Years		\$	Years	
			•			·	•							
NO/LOW	Cost Recommendations	[1		
	Lower Domestic Hot water Temperature Set-Points Details: Reduce Water Temp. for Building From 132 Deg. F to 120 Deg. F	\$0	1,075	0	0	107	\$1,162	\$O	\$1,162	0.00	0.00	\$17,292	20.00	
2	Replace High Flow Faucet Aerators To Low Flow Faucet Aerators Details : Replace 2.2 GPM Aerators w/ 1 GPM Aerators in All Bathroom S inks	\$111	37	0	3	4	\$66	\$0	\$66	1.67	5.12	\$456	10.00	
	Install Automatic Lighting Controls	\$126												
3	Details : Use Photo sensors in 2 Main Stairwells		0	0 5,805	0	20	D \$1,163	,163 \$0	\$1,163	0.11	91.58	\$11,449	12.00	
	Convert Gas Pilot Stoves To Electronic Ignition Stoves	vilot S toves To E lectronic Ignition S toves	24	0	0	3	\$37	\$0	\$37	4.30	2.78	¢ 291	15.00	
4	Details : Add to Kitchen S tove and Oven Unit	\$158	34	0	0	3	\$37	φŪ	ψ07	4.30	2.70	\$281	15.00	
	Install Energy Savers on Vending, Snack Machines	40.00				_	* 202	* 0	* 222	0.60	10.05	* 2 C- 2	1	
5	Details : S oda Machine in Faculty Lounge	\$200	0	1,610	0	5	\$323	\$0	\$323	0.62	19.25	\$3,650	15.00	
	Reduce Light Levels By Delamping of Lamps													
	Details : Remove excess lamps above perimeter bulkhead in <i>M</i> ain Room in the Library	\$205	0	7,363	0	25	\$1,475	\$0	\$1,475	0.14	106.84	\$21,739	20.00	
	Install Timers On Rooftop E xhaust Fans	4 2 - 0				_	* 240	.	* 240	1.00	0.70	* 2.224	1.5.00	
7	Details : Restroom E xhaust Fans	\$379	0	1,547	0	5	\$310	\$0	\$310	1.22	9.76	\$3,321	15.00	
	Install Outside Air (OA) Temperature Reset Controls for Hot Water Boilers													
8	Details : Utilize Outside Air Reset in Central B <i>N</i> S HVAC Control S ys tem	\$645	3,107	0	0	311	\$3,361	\$0	\$3,361	0.19	77.47	\$49,352	20.00	
	Totals for No/Low Cost Items	\$1 <i>,</i> 825	4,253	16,325	3	481	\$7,897	\$0	\$7,897	0.23				

YOUR PARTNER IN REAL ESTATE LIFECYCLE PLANNING & MANAGEMENT 800.733.0660 • <u>www.emgcorp.com</u>

98515.11R-001.268

- REPORT -

Lis	st of Recommended Energy Conservation N	leasures For	Broadmea	dow Schoo	ol								
ECM #	Description of ECM	Projected Initial Investment	Estimated Annual Energy Savings		Estimated Annual Water Savings	Total Energy Savings	Estimated Cost Savings	Estimated Annual O&M Savings	Total Estimated Annual Cost Savings	S imple Payback	S.I.R.	Life Cycle Savings	Expected Useful Life (EUL)
			Natural Gas	Electricity									
		\$	Therms	kWh	kgal	MMB tu	\$	\$	\$	Years		\$	Years
Capita	I Cost Recommendations Replace High Intensity Discharge Lamp (HID) with												
1	Details : Outs ide Pole Lights , Gym Lights , and Auditorium Lights	\$9,784	0	20,369	0	69	\$4,081	\$186	\$4,267	2.29	4.98	\$38,929	15.00
2	Install Automatic Lighting Controls Details : Install Motion & Occupancy Sensors throughout building	\$22,120	0	65,690	0	224	\$13,160	\$0	\$13,160	1.68	5.92	\$108,872	12.00
3	Retro-Commission The Building HVAC & Control System Details: Balance Flows and Verify Proper Operation of all Equipment	\$30,650	1,554	23,250	0	235	\$6,338	\$0	\$6,338	4.84	2.47	\$45,013	15.00
	Total For Capital Cost	\$62,554	1,554	109,309	0	528	\$23,578	\$186	\$23,764	2.63			
	Interactive Savings Discount @ 10%		-581	-12,563		-101	-\$3,147	-\$19	-\$3,166				
	Total Contingency Expenses @ 15%	\$9,657											
Total for Improvements		\$74,035	5,226	113,071	3	908	\$28,327	\$167	\$28,495	2.60			

If all of the above mentioned ECM's are implemented, Broadmeadow Elementary School could potentially save approximately \$28,495 per year with an investment of \$74,035, yielding a net effective payback of 2.60 years.

98515.11R-001.268

REPORT -

98515.11R-001.268

8.1. ECM CALCULATION ASSUMPTIONS

EMG has made the following assumptions in calculation of the Energy Conservation Measures.

- Building operating hours, as detailed in section 5.1 are assumed to be 60 hours per week.
- Annual Heating, Cooling & ventilation Equipment Operating Hours are derived from actual consumption and equipment input rates
- Typical lighting operating hours are assumed to be 12 per day for school season or 2,160 hours per year.

8.2. No/Low Cost ECM Descriptions

EMG has identified 8 No/Low Cost Energy Conservation Measures (ECMs) for this property. This includes all measures which can be implemented below the cost threshold of \$1,000. The following paragraphs describe each of these ECMs along with the initial installed costs, annual energy savings, and payback periods.

8.2.1. Lower Domestic Hot Water Temperature Set Point

Lowering the hot water temperature decreases the amount of energy required to heat the water. In addition, distribution piping losses, which are proportional to the temperature difference between the hot water and its surroundings, will be reduced.

Set the water heater thermostat at the lowest temperature at which hot water will meet the occupants' needs. If the demand for hot water fluctuates and a lowered tank temperature will not meet the peak demand, install a mixing valve rather than lowering the tank temperature. If the entire system is set at a high supply temperature to serve the needs of a piece of equipment, consider reducing the tank temperature and installing a booster heater to serve that specific piece of equipment. Note that water in excess of 138°F can cause skin burns.

In the case of Broadmeadow Elementary School the water temperature in the bathrooms was measured at 132°F. The temperature can be adjusted in the boiler room with the mixing valves on the wall with substantial savings and zero cost. EMG strongly recommends the resetting of the temperature to 120°F to save energy. In addition at an elementary school 132°F water could be a hazard.

8.2.2. Install Timers on Rooftop Exhaust Fans

Ventilation systems bring fresh outdoor air into the building to provide the occupants with oxygen and to dilute internally-generated air pollutants. Reducing the operating times for discrete ventilation exhaust systems saves fan energy. Curtailing ventilation air reduces heating or cooling loads, except under economizer operation. When a building zone is unoccupied, the ventilation system should be turned off, unless it is "flushing" the building in an economizer mode. Coordinate changes to ventilation air supply with changes to exhaust systems to maintain air balance in the space. Exhaust fans are generally used in areas with high concentrations of pollutants generated from occupants' activities. These exhaust requirements are rarely continuous, and the fans should operate only as needed. Kitchen exhaust fans and make-up air units should only operate while cooking is in progress. This can be accomplished with timers and manual overhead switches. Manual timers are applicable to bathroom exhaust fans. Sensors may be used to shut down fans in intermittently occupied rooms. Care should be exercised in controlling the exhaust from fume hoods used to vent toxic gases in laboratories.

The building has 8 rooftop exhaust fans that are estimated to be continuously running for 9.5 hours a day. The normal hours at the school are from 6:00 AM till 4:30 pm (Monday-Friday). EMG recommends installing a mechanical timer on each rooftop restroom exhaust fan such that it is turned off a few minutes after the restroom lights are turned "off" by the motion sensor. Assuming that the exhaust fan run time is reduced to 4 hours a day, annual run time will be reduced to 1,018 hours each year.

8.2.3. Install Low Flow Aerators in Water Faucets

By reducing the flow of water coming from the restroom faucets, aerators can generate energy savings at low cost and with easy installation. The savings generated would be in the form of reduced water and sewer costs and at the same time aerators would save energy by reducing the demand for hot water. The average faucet has a flow rate of about 3 to 5 GPM. Adding a screw-in faucet aerator reduces the flow to 0.5 to 1.5 GPM in the bathroom and 2.2 GPM in the kitchen. In addition to saving energy and water, the "foamier" water that comes from faucet aerators wets objects better than water from a faucet with no aerator, which tends to bounce off the object rather than thoroughly wetting it.

In the case of Broadmeadow Elementary School the bathrooms are equipped with 2.2 GPM aerators. EMG strongly recommends the replacement of the aerators with 1 GPM units.

8.2.4. Install Photo Control Sensors in Stairwells

One of the best ways to save energy is to turn off lights that are not needed. This saves energy, as well as extends the replacement time on lamps. (While frequent switching may in some cases shorten lamp life, the savings in electrical power will more than compensate).

The operating time of lighting systems can be reduced either automatically or manually. Automated controls are more reliable for ensuring that energy savings are achieved. Local switches can be labeled to encourage occupants to turn off lights when leaving an area. Individual switches in perimeter offices permit occupants to reduce lighting levels on sunny days. Sophisticated lighting control systems are available, but they are costly to retrofit. They should be considered when the lighting system is being replaced. With the exception of security lights, storeroom lighting can be placed on timed switches that shut off after the selected interval. All exterior lighting, as well as interior lighting in glass-enclosed vestibules, should be placed on photocell and/or timer control.

In the case of Broadmeadow Elementary School the stairwell lights are on during the day when the windows and skylights let in sufficient light to properly illuminate the area for safe travel. EMG strongly recommends the installation of photo control sensors in these areas.

8.2.5. Convert Gas Pilot Stove Top and Over to Electronic Ignition Stove Top and Oven

Having gas pilots continually lit 24/7 can be a substantial waste of energy. This is especially true on large commercial units in schools and restaurants. Using electronic ignition on stoves and ovens instead of gas pilots can completely eliminate this waste. Kits are available for the conversion of old commercial units that are in good condition and likely to have many more years of usage.

In the case of Broadmeadow Elementary School the stove top and oven unit has gas pilots. EMG strongly recommends the conversion to Electronic Ignition in this case.

8.2.6. Install Vending Controls on Soda Machine in Teachers Lounge

Vending machines are usually designed to operate all day round irrespective of the occupancy level in the office. This means that the vending machines operate for more than 12 hours a day when not required in case of commercial establishments.

There are two types of vend misers; one has a timer in it, which is programmed to turn off or tune down the vending machines after the office hours and bring it back up a hour before the office opens. The other is a motion sensor based system that tunes down the machines upon detecting un-occupancy for a preprogrammed duration of time. In the case of vending machines storing chilled products, the vend miser doesn't turn off the machine entirely, but reduces the operating time of the compressor, such that the machine maintains the products at a minimum tolerable temperature.

In the case of Broadmeadow Elementary School there is 1 soda vending located in the teachers lounges, of which all are non-energy star certified. EMG recommends installing vend misers on these vending machines, which shall automatically reduce the running time of these machines during weekends and unoccupied hours.

8.2.7. Remove Linear Fluroscent 32W T8 Lamps Above Perimeter Bulkhead in Library

The lighting in office and common areas often tends to warm and bright. Whereas when the LUX readings taken at these locations, are compared to the IESNA lighting standard, it is often observed that the lighting levels are over the prescribed levels. In such circumstances EMG advises to go for de-lamping of individual light fixtures, such that the LUX levels post de-lamping would be in a close range to that of the prescribed limit. The result of de-lamping is reduction in the brightness in the specific areas, but would always be slightly above the recommended IESNA levels. The light readings are taken by hand held light meter, at an approximately table top height from the floor. The advantage of de-lamping is reduction in the demand load as well as the annual lighting energy consumption. EMG recommends taking de-lamping trials at different locations before implementing it across the entire space. When removing fluorescent or HID lamps, also remove or disconnect the ballast to prevent them from continuing to consume energy.

In the case of Broadmeadow Elementary School the lighting above the bulkhead is indirect and more for architectural accents. EMG strongly recommends the decommissioning of these lights since the light levels in the library are above acceptable limits without them.

8.2.8. Utilize Outside Air Temperature Reset Control System in Central BMS System to Control the Boiler

HVAC equipment is usually sized to meet conditions at the design peak load. Coil water temperature set points are also chosen to meet the design load. However, during most hours of operation, the equipment operates at part-load. Use of design set points on water loops at part-load results in unnecessary thermal losses and equipment inefficiencies. Resetting the set point reduces energy consumption by matching hot or chilled water supply set points to the actual equipment load.

Reset of supply water temperature may be based on the outside air temperature or on the hot or chilled water demand. Except for buildings with dominant internal loads, the space load generally may be considered to be a function of the outdoor temperature. For example, as the outside air temperature rises, chilled water temperature is adjusted upward and hot water temperature is adjusted downward. Alternatively, a more accurate method is to reset the water temperature based on instrumentation readings. For further discussion on the reset strategies and the selection algorithms of the hot and chilled water temperature set points, refer to a report by the National Bureau of Standards, Control Algorithms for Building Management and Control Systems-Hot Deck/Cold Deck/ Supply Air Reset, Day/Night Setback, Ventilation Purging, and Hot and Chilled Water Reset (NBS 1984a).

In the case of Broadmeadow Elementary School the BMS is not utilizing the outside air reset control to its full advantage. The system is designed to be able to use an incremental temperature reset that would significantly reduce the energy requirements of the boiler. EMG strongly recommends the reprogramming of this feature in the BMS system.

CAPITAL COST ECM DESCRIPTIONS 8.3.

EMG has identified 4 Capital Cost Energy Conservation Measures (ECMs) for this property. This list includes recommended measures which have an estimated implementation cost of greater than \$1,000. The following paragraphs describe each of these ECMs, in addition to their initial installed costs, annual energy savings, and payback periods.

8.3.1. Replace Metal Halide Lighting in Gym, Auditorium and Exterior Site Lighting w/ Induction Lights

Induction lighting has the advantage of giving off the same amount of light with half the wattage of a metal halide or high pressure sodium light. Induction lights also last several times longer than the typical HID light. The other advantage to induction lighting is that it is instant on and dimmable, it therefore can be put on motion sensors when equipped with bi-level ballast and operate at 40% power when there is no motion detected and still give substantial site lighting.

In the case of Broadmeadow Elementary School the gym, auditorium, exterior parking lot lighting currently use metal halide lamps. EMG strongly recommends the installation of induction lighting in these areas.

8.3.2. Install PIR Motion & Occupancy Sensors Throughout the School to control lighting

Lighting systems consume large amounts of energy in most buildings. Energy is saved by reducing both lighting power consumption and the additional cooling load imposed by lighting. In winter, lights do help heat the building; however, in most cases, lighting is a less efficient heating source than the building HVAC system. The lights should be turned off when an area is unoccupied, even if only for a short period. Rooms with intermittent use, such as storerooms, lavatories, etc., should have labeled, individual manual switches so that lights can be turned off when the room is not in use. Occupancy sensors are also effective in spaces that are used intermittently. EMG recommends installing ceiling-mounted occupancy sensors for controlling lighting in large areas and conference rooms and wall-mounted occupancy sensors in individual offices, copy rooms and restrooms.

In the case of Broadmeadow Elementary School there was one occupancy sensor in the whole school. EMG strongly recommends the installation of occupancy sensors throughout the school.

8.3.3. Recommision HVAC and BMS System

Retro Commissioning (RCx) of HVAC and control systems is a good maintenance practice every five years, especially for Variable Air Volume (VAV) systems. Systems have tendency to go out of balance over a period of time due to changing set-points, maintenance and adjustments. RCx will bring all hydronic and air balancing to original design intent to meet current occupant comfort conditions. Outside Air rates will also balanced accordingly.

Broadmeadow Elementary School has several roof top air handlers distributing air via VAV-reheat distribution system. Hot water is circulated via two pumps and throttled by 3-way valves. Per discussions with site management, the school systems were never rebalanced and/or RCx'd since 2001 when the School was built. EMG strongly recommends making necessary improvements as recommended and retro-commission the building and HVAC systems and air balance the entire VAV distribution to optimize equipment performance and attain energy savings.

8.4. MEASURES RECOMMENDED FOR CONSIDERATION

8.4.1. Install VFD's on Motors on Boiler Circulation Pumps

Variable speed drives save energy by sensing the load requirements and changing the motor's power and speed to meet these requirements.

There are two types of variable speed drives: mechanical and electronic. Mechanical variable speed drives consist of either magnetic clutches or variable ratio belt drives that allow the motor to run at a constant speed, while the motor-driven equipment speed varies. Electronic variable speed drives adjust the speed of the motors they control by electronically varying the input voltage and frequency to the motor. Both systems have enormous conservation potential. The electronic drives are more energy efficient than the mechanical, but are also more costly (Usibelli et al. 1985). Centrifugal devices are the best candidates for variable speed drives. Centrifugal fans and pumps for water, sewage, refrigerant, and air are typical applications. Centrifugal devices whose flow rates and pressures are normally controlled by throttling can be replaced with variable speed drives. The more operating time below full load, the greater the payback potential of variable speed drives (NCEL 1984c).

In the case of Broadmeadow Elementary School the two 10 HP recirculation pumps on the boiler do not currently have VFD's. EMG strongly recommends the addition of VFD's to these recirculation pumps and regulate pump speed and in-turn energy consumption relative to actual facility load.

8.4.2. Insulate Ceiling and Roofs

The amount of heat conduction through ceiling and roof is proportional to its overall heat transfer coefficient (commonly called the U-factor) and the temperature difference between the conditioned space and its surrounding, modified by the effect of solar intensity and wind velocity on the exterior surfaces. One of the most effective ways to reduce heat transfer through ceilings and roofs is to retard heat conduction by adding insulation.

- REPORT

Where the existing roof is sound and directly accessible from an attic or ceiling void, polyurethane foam or mineral fiber may be sprayed on the underside, with rigid batt or other applicable insulation for the inside surface. Insulation, typically fiber-glass batt, may also be laid on the top of a ceiling, taking care not to cover up light fixtures. It is generally not practical to insulate the exterior of the roof unless the roof needs to be replaced. In this case, rigid insulation may be used, and protected with a new roof membrane. As buildings become more insulated, the heat transfer through structural members becomes more significant, especially for buildings with metal structural members. Un-insulated structural members can degrade the performance of the insulation up to 20%, and resultant condensation can cause the structure to deteriorate. Therefore, care should be taken to properly insulate the structural members. Often more energy can be conserved by insulating the ceiling rather than the roof unless the attic is being used for special storage, frequent access is required, or a moderate attic temperature is desired. However, if only the ceiling is insulated, any ducting or piping should be insulated to avoid excessive heat transfer or freezing. It is important to be sure that the attic is ventilated by providing one to two inches of ventilation area per square foot of attic.

In the case of Broadmeadow Elementary School the only insulation in the gym, auditorium, and cafeteria is the rigid insulation under the 4 ply Bituminous roofing system with an R-13 value. EMG strongly recommends the addition of R-19 fiberglass insulation properly encapsulated in a polyethylene membrane to significantly reduce energy losses. This project has relatively less energy cost savings compared to high initial investment. So we are recommending this project under capital improvement category for improved occupant comfort.

8.4.3. Replace existing RTUs with High Efficiency Oil free Compressor driven RTUs

Existing Roof top units have passed 75% of ASHRAE Expected Useful Life (EUL) and have about five years of Remaining Useful Life (RUL). EMG does not recommend replacing the units at this time as they are relatively in good operating condition. Also compressors and other major components for some units have been replaced in recent years.

But we recommended replacing the units at end of life (estimated to be 5 years based on ASHRAE EUL chart) with High efficiency units with on board VFDs for supply and return fans and oil free magnetic clutch driven variable speed compressors for cooling. These units cost about 25% more than standard efficiency units but in turn operate much more efficiently. EMG performed a cost feasible analysis and it shows a premium recovery rate of 5.35 years with newer units. This measure is strongly recommended at time of replacement.

8.4.4. Install Pulse or Condensing Boilers/Furnaces

New boilers and furnaces on the markets generally attain efficiencies of above 80%. The efficiencies of pulse and condensing units can be above 90% and reduce the energy requirements considerably.

Boilers or furnaces at or near the end of their service life should be replaced with energy-efficient units. The size of the replacement unit should match the current and projected needs of the installation. Replacing original equipment with modular units with smaller capacities should be considered to reduce the cycling losses.

In the case of Broadmeadow Elementary School the two boilers currently in use are 85.6% efficient per manufacturer specifications. Adding a new boiler or replacing one of existing boilers is not cost effective at this time. So EMG recommends installing one condensing boiler when one of the two boilers is up for replacement. As in the RTU situation, the condensing boilers cost about 25-30% more than standard efficiency boilers and the premium recovery rate is about 7 years which makes the project attractive at that time. EMG strongly recommends at least one of the new replacement boilers be fully condensing and fully pulsating type.

REPORT

9. IMPLEMENTION OF AN OPERATIONS AND MAINTENANCE PLAN

The quality of the maintenance and the operation of the facility's energy systems have a direct effect on its overall energy efficiency. Energy-efficiency needs to be a consideration when implementing facility modifications, equipment replacements, and general corrective actions. The following is a list of activities that should be performed (or added as necessary to existing O&M or Preventative Maintenance plan) as part of the routine maintenance program for the property. These actions, which have been divided into specific and general recommendations, will insure that the energy conservation measures identified in this report will remain effective. The following general recommendations should be continued or implemented.

The Broadmeadow school is currently employing good maintenance practices to run the equipment and distribution system in optimal conditions. These practices should be continued along with following checklist items to ensure proper occupant comfort and attain projected energy savings.

Building Envelope

- 1. Check Caulking and weather stripping throughout the envelope
 - Currently in good condition. No immediate need noted.
- 2. Windows inspected periodically for damaged panes and failed thermal seals
 - Currently all windows, doors and seals in good condition.
- 3. Automatic door closing mechanisms repaired and adjusted as needed
- Currently all doors closing properly.
- 4. Roof and insulation checked at least annually
 - Currently in good condition. New insulation improvements recommended for cafeteria and gym.

Heating and Cooling

- 1. The burners cleaned and fuel/air ratios optimized during routine maintenance checks
 - Boiler not running at time of audit. But per maintenance burners are cleaned and A/F adjusted annually.
- 2. Boiler and RTUs inspected and cleaned annually
 - Currently in practice.
- 3. Temperature settings reduced in unoccupied areas and set points seasonally adjusted.
 - Currently occupied/unoccupied set points maintained by BMS. EMG verified and the system appeared to be monitoring properly. But Retro-commissioning is recommended as an ECM will replace mal functioning sensors.
- 4. Control valves and dampers checked for functionality semi-annually and repaired, when needed
 - Is recommended as part of retro-commissioning
- 5. Equipment inspected for worn or damaged parts as part of a monthly maintenance check
 - Currently in practice
- 6. Ductwork visually inspected and checked for leaks or damaged insulation as part of a semi-annual maintenance check
- 7. Hot air registers and return air ductwork clean and unobstructed once every 3-5 years
 - Duct work recently cleaned.

98515.11R-001.268

ENERGY AUDIT

REPORT

8. Air dampers operating correctly

- Is recommended as part of retro-commissioning. Currently controlled by BMS.
- 9. Test and balance completed annually to ensure heating uniform throughout the spaces
- Is recommended as part of retro-commissioning.
- 10. Evaporator coils and condenser coils regularly checked and cleaned
 - Once every 3-5 years.
- 11. Air filters inspected monthly and replaced prior to excessive visual buildup (May increase filter costs, but will reduce fan energy costs)
 - Currently in practice.

Domestic Hot Water

- 1. Domestic hot water heater temperature set to the minimum temperature required
- Recommended as an ECM
- 2. Hot water piping checked routinely for damaged insulated and leaks
 - Currently in good condition.

Lighting

- 1. Over-lit areas managed by bi-level switching or photocell controls or de-lamping
 - Currently recommended
- 2. Only energy-efficient replacement lamps used and in-stock for replacement
- 3. Lighting fixture reflective surfaces and translucent covers clean
 - Currently in good condition
- 4. Walls clean and bright to maximize lighting effectiveness
- 5. Rooms controlled by motion or occupancy sensors
 - Currently recommended as ECM
- 6. Timers and/or photocells operating correctly on exterior lighting
 - Operating properly. Currently on timer and EMG recommends combination of photocell and timer to reduce unnecessary operating hours.

Existing Equipment and Replacements

- 1. Refrigerator and freezer doors closed and sealed correctly
- Currently kitchen freezers are properly weather stripped and in good condition
- 2. Kitchen exhaust fans only used when needed or sensors installed to limit operation
 - Currently there are no sensors. School was not functioning at time of audit. But EMG recommends kitchen exhaust hood sensor to shut fan off during day when not needed.
- 3. Office/ computer equipment either in the "sleep" or "off" mode when not used
 - Smart strips are good application.
- 4. All other recommended equipment specific preventive maintenance actions conducted

In addition, equipment replacement performed assuring that:

- 1. All equipment replacements not over/undersized for the particular application
- 2. All equipment replacements with energy conserving and/or high efficiency devices

ENERGY AUDIT

- REPORT

10. APPENDICES

- APPENDIX A: Photographic Record
- APPENDIX B: Site Plan
- APPENDIX C: Records of Communication
- APPENDIX D: Glossary of Terms
- APPENDIX E: Mechanical Equipment Inventory
- APPENDIX F: Lighting Systems Schedules
- APPENDIX G: ECM Calculations
- APPENDIX H: Supporting Documents

$E \ n \ e \ r \ g \ y \ A \ u \ d \ i \ t$

- **К**ЕРОКТ —

98515.11R-001.268

APPENDIX A: Photographic Record

EMG PHOTOGRAPHIC RECORD

Project No.: 98515.11R-001.268

Photo West elevation – center (main entrance) #1:

Photo West elevation - south end (front of school) #3:

Photo East elevation - south end (rear of school) #5:

Photo West elevation - south end (front end of #2: school)

Photo East elevation - north end (rear of school) #4:

Photo East elevation –north end (rear of school) #6:

EMG PHOTOGRAPHIC RECORD

Project No.: 98515.11R-001.268

Photo Two Weil McLain Boilers - providing heat #7: to building

Photo Hot water recirculation pumps #9:

Photo Five McQuay rooftop cooling units (RTU) #11: with natural gas furnace

Photo Buildings hot water heaters #8:

Photo VAV boxes in the ceiling of rooms #10:

Photo Split system air conditioning units for #12: cooling data centers

EMG PHOTOGRAPHIC RECORD

Project No.: 98515.11R-001.268



Photo Electrical room showing main panels #13:

Photo Domestic hot water recirculation pumps #15:

Photo Pad-mounted transformer #17:

Photo Main electric meter for building #14:

Photo Mixing valve for buildings hot water #16:

Photo Kohler diesel generator #18:

EMG PHOTOGRAPHIC RECORD

Project No.: 98515.11R-001.268

Photo Water meter #19:

Photo Elevator oil reservoir with submersible #21: sump pump

Photo Storage room #23:

PhotoBaseboard hydronic heating unit on exterior#20:walls of rooms

PhotoFour ply built up roof system with flood#22:coat and Aggregate Surfacing

Photo Kitchen #24:

EMG PHOTOGRAPHIC RECORD

Project No.: 98515.11R-001.268

Photo Main office area #25:

Photo Typical classroom #27:

#29:

Photo Main office area #26:

Photo School cafeteria #28:

PhotoMain hall at main entrance - do not need#30:Sconce style lights (should be turned off)

EMG PHOTOGRAPHIC RECORD

Project No.: 98515.11R-001.268

Photo Library #31:

Photo South stairwell #33:

Photo View of auditorium lighting and duct work #35:

Photo Main entrance vestibule #32:

PhotoGym has sufficient day lighting to avoid#34:using 400W metal Halide lights

Photo Elevator in middle section of school #36:

EMG PHOTOGRAPHIC RECORD

Project No.: 98515.11R-001.268

Photo Central stairwell with skylight in main hall #37:

Photo Kitchen vent discharge #39:

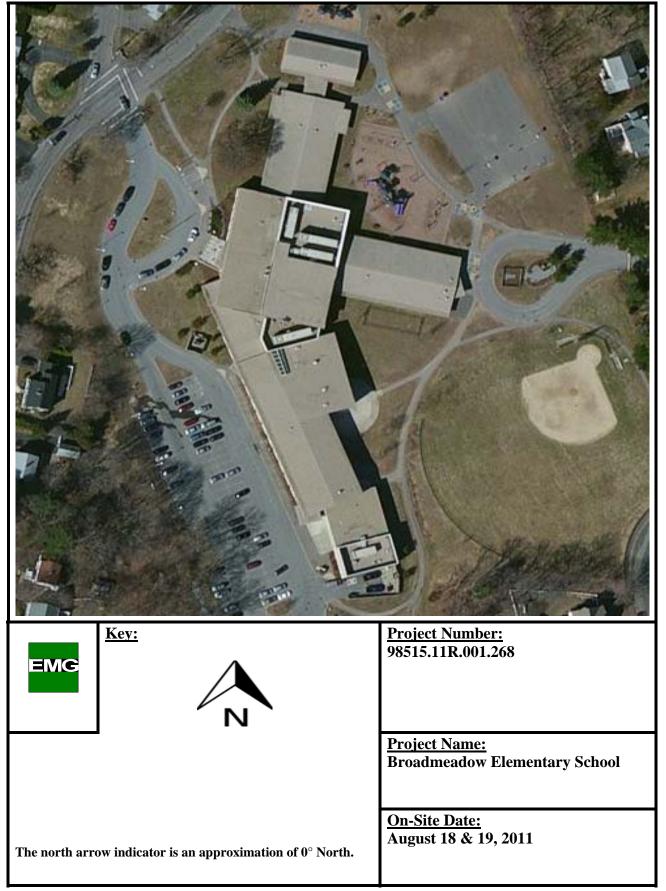
#41:

Photo Basement hallway #38:

PhotoSpace under door at north end emergency#40:exits - 2 doors (needs door sweeps)

ENERGY AUDIT

- **R**EPORT -----


98515.11R-001.268

APPENDIX B: Site Plan

YOUR PARTNER IN REAL ESTATE LIFECYCLE PLANNING & MANAGEMENT 800.733.0660 • www.emgcorp.com

EMG

Site Plan

$E \ n \ e \ r \ g \ y \ A \ u \ d \ i \ t$

REPORT —

98515.11R-001.268

APPENDIX C: Records of Communication

ENERGY AUDIT

— **R** E P O R T — —

RECORD OF COMMUNICATION

Date: Project Number:	Date: <u>August</u> Project Number: 98515		Time: Recorded by:	9:00 AM Luke Jacques, Field Observer/Project
roject Number.			Recorded by:	Manager
Project Name: Broad		neadow Elementa	ry School	
Communicat	ion with:	Chip Laffey		
	of:	Needham Town	ship	
	Phone:	781-455-0442 x	273	
Communication via	1			
Telephone		ion		
		ite Assessment		
X Office Visit				
Other:				
RE:				
Summary of Commu	inication:			

Mr. Laffey assisted during on site assessment and gave insight of building and its operations.

$E \ n \ e \ r \ g \ y \ A \ u \ d \ i \ t$

- **R** E P O R T -----

98515.11R-001.268

APPENDIX D: Glossary of Terms

- REPORT -

Glossary of Terms and Acronyms

<u>ECM</u> – Energy Conservation Measures are projects recommended to reduce energy consumption. These can be No/Low cost items implemented as part of routine maintenance or Capital Cost items to be implemented as a capital improvement project.

<u>Initial Investment</u> – The estimated cost of implementing an ECM project. Estimates typically are based on R.S. Means Construction cost data and Industry Standards.

<u>Annual Energy Savings</u> – The reduction in energy consumption attributable to the implementation of a particular ECM. These savings values do not include the interactive effects of other ECMs.

<u>Cost Savings</u> – The expected reduction in utility or energy costs achieved through the corresponding reduction in energy consumption by implementation of an ECM.

<u>Simple Payback Period</u> –The number of years required for the cumulative value of energy or water cost savings less future non-fuel or non-water costs to equal the investment costs of the building energy or water system, without consideration of discount rates.

<u>EUL</u> – Expected Useful Life is the estimated lifespan of a typical piece of equipment based on industry accepted standards.

<u>RUL</u> – Remaining Useful Life is the EUL minus the effective age of the equipment and reflects the estimated number of operating years remaining for the item.

<u>SIR</u> - The savings-to-investment ratio is the ratio of the present value savings to the present value costs of an energy or water conservation measure. The numerator of the ratio is the present value of net savings in energy or water and non-fuel or non-water operation and maintenance costs attributable to the proposed energy or water conservation measure. The denominator of the ratio is the present value of the net increase in investment and replacement costs less salvage value attributable to the proposed energy or water conservation measure. It is recommended that energy-efficiency recommendations be based on a calculated SIR, with larger SIRs receiving a higher priority. A project typically is recommended only if the SIR is greater than or equal to 1.0, unless other factors outweigh the financial benefit.

<u>Life Cycle Cost</u> - The sum of the present values of (a) Investment costs, less salvage values at the end of the study period; (b) Non-fuel operation and maintenance costs: (c) Replacement costs less salvage costs of replaced building systems; and (d) Energy and/or water costs.

<u>Life Cycle Savings</u> – The sum of the estimated annual cost savings over the EUL of the recommended ECM, expressed in present value dollars.

<u>Building Site Energy Use Intensity</u> - The sum of the total site energy use in thousand of Btu per unit of gross building area. Site energy accounts for all energy consumed at the building location only not the energy consumed during generation and transmission of the energy to the site.

<u>Building Source Energy Use Intensity</u> – The sum of the total source energy use in thousand of Btu per unit of gross building area. Source energy is the energy consumed during generation and transmission in supplying the energy to your site.

<u>Building Cost Intensity</u> - This metric is the sum of all energy use costs in dollars per unit of gross building area.

<u>Greenhouse Gas Emissions</u> - Although there are numerous gases that are classified as contributors to the total for Greenhouse Emissions, the scope of this energy audit focuses on carbon dioxide (CO₂). Carbon dioxide enters the atmosphere through the burning of fossil fuels (oil, natural gas, and coal), solid waste, trees and wood products, and also as a result of other chemical reactions (e.g., manufacture of cement).

$E \ n \ e \ r \ g \ y \ A \ u \ d \ i \ t$

- КЕРОКТ —

98515.11R-001.268

APPENDIX E: Mechanical Equipment Inventory

Description	Loc.	Manufacturer Model	Age (Yrs)		Capacity	Fuel / Energy Source	Serves	Operating Hours / Year	Remarks	Expected Useful Life (EUL)	Remaining Useful Life (RUL)
(2) Hot Water Boilers	Boiler Room	Weil-McLain Model 1388	2001	10	3,270 MBTUH	Gas	Buildings Heat	950 FLE	85.6% Eff.	35	25
(2) Burners	Boiler Room	Power Flame WCR3 -G-25	2001	10	3392 MBH	Gas	Buildings Heat	950 FLE		21	11
Hot Water Heater	Boiler Room	PVI Model 750 P 400A-TP	2001	10	600 MBTUH 400 Gal	Gas	Domestic Hot Water	544	80% Eff.	10	0
(2) Hot Water Recirculation Pump Motors	Boiler Room	Baldor Model: H3313T	2001	10	10 HP	Electric	Buildings Heating Hot Water	1820		20	10
RTU-1	Roof	McQuay Model: RPS090CSA	2001	10	90 Ton	Electric	North & East Wing Cooling	1260		15	5
RTU-1 Furnace	Roof	McQuay Model: 140 AHA	2001	10	19,000 CFM 1750 MBH	Natural Gas	North & East Wing Heating			15	5
RTU-2	Roof	McQuay Model: RPS050CSA	2001	10	50 Ton	Electric	Office and Adjacent Cooling	1260		15	5
RTU-2 Furnace	Roof	McQuay Model: 080 AHC	2001	10	10,400 CFM 1,000 MBH	Natural Gas	Office and Adjacent Heating			15	5
RTU-3	Roof	McQuay Model: RPS050CSA	2001	10	50 Ton	Electric	Auditorium Cooling	1260		15	5
RTU-3 Furnace	Roof	McQuay Model: 080 AHC	2001	10	10,400 CFM 1,000 MBH	Natural Gas	Auditorium Heating			15	5
RTU-4	Roof	McQuay Model: RPS040CSA	2001	10	40 Ton	Electric	Kitchen and Cafeteria	1260		15	5
RTU-4 Furnace	Roof	McQuay Model: 080 AHB	2001	10	9,800 CFM 1,000 MBH	Natural Gas	Kitchen and Cafeteria			15	5
RTU-5	Roof	McQuay Model: RPS090CSA	2001	10	90 Ton	Electric	South Wing Cooling	1260		15	5
RTU-5 Furnace	Roof	McQuay Model: 150 AHC	2001	10	19,000 CFM 1750 MBH	Natural Gas	South Wing Heating			15	5
Gym AHU-1	Ceiling	McQuay CAH010FDAC	2001	10	4,500 CFM 253 MBH	Natural Gas	Gym	2100	Qty: 2	15	5
Split System AC Units	Roof	Daikin Model: RZQ42 MVJU	2001	10	3 1/2 Ton	Electric	Office/Data Rm	500	Qty: 2	15	5
Roof Top Ventilators	Roof	Penn Ventilation Model: FX24BFT	2001	10	4400 CFM	Electric	Kitchen	2600		20	10
Roof Ventilator	Roof	Penn Vent Model DX06B	2001	10	Unk	Electric	Bathrooms Misc. Areas	2600	Qty: 15	20	10
Roof Ventilator	Roof	Penn Vent Model DX13B	2001	10	Unk	Electric	Bathrooms Misc. Areas	2600	Qty: 1	20	10
Roof Ventilator	Roof	Penn Vent Model DX24BFT	2001	10	Unk	Electric	Bathrooms Misc. Areas	2600	Qty: 1	20	10
Roof Ventilator	Roof	Penn Vent Model DX30B	2001	10	Unk	Electric	Bathrooms Misc. Areas	2600	Qty: 2	20	10
Domestic Water Recirc. Pumps	Basement	Taco Model 0011-SF4	2001	10	1/8 HP Motors 1.76 Amps	Electric	Domestic Water	544	Qty: 3	10	0
Generator	Front Parking Lot	Kohler Model: 150RZD	2001	10	150 KW 188 KVA	Nat. Gas	Building Emergency			35	25
Elevator Pump Motor	Basement	US Motors Catalogue No.: EZ25S1BZ	2001	10	25 Hp	Electric	Elevator		Qty: 1	20	10

$E \ n \ e \ r \ g \ y \ A \ u \ d \ i \ t$

- REPORT ----

98515.11R-001.268

APPENDIX F: LIGHTING SYSTEMS SCHEDULES

Existing Facilities Program Lighting Form: Performance Based

Date:

г

LINK TO EXAMPLE SHEET

Applicant Name: 98515.11R-001.268

Facility Name: Broadmeadow Elementary School

Luke Jacques

COPY AND OBJECT TH

COPY AND PASTE TABLES AS EXCEL OBJECT THAT ARE BELOW THE BLUE

Fixture Coding Legend										
<u>c</u>	ompact Fluorescents	EXII	Signs	Other Bulbs						
CF " "	Compact Flourescent - "wattage"	E - ' '	Exit Signs - "Type of light and wattage"	н	Halogen - "wattage"					
i.e. CFL26W	CFL - 26 Watt Compact Fluorescent	i.e. ELED5W	Exit Sign with 5 Watt LED	HPS - " "	High Pressure Sodium - "wattage"					
ie CFQ32W	CFQ - 32 Watt Quad Compact Fluorescent	Le. EI20W Exit Sign with 20 Wa Incandescent		1-**	Incandescent - "wattage"					
i.e. CFS13W	CFS - 13 Watt Spiral Compact Fluorescent	Linear F	luorescents	MV - * *	Mecury Vapor - * wattage*					
i.e. CFM56W	CFM - 56 Watt Biax Compact Fluorescent	F- # - T8 - # ft	F - Wattage - Bulb Type - length of bulb	MH - " "	Metal Halide - "wattage"					
i.e. CFD56W CFD - 2D Compact fluorescent		i.e. F30T8-4 ft	4 foot 30 Watt T8 Linear Fluorescent	i.e. MV250W	250 Watt Mercury Vapor Bulb					

Existing Building Lighting Schedule											
Line Item	Area Description	Floor(s)	Type of Bulb	Number of Fixtures	Lamps per fixture	Existing Control	Hours of Operation hrs/week	Total KW	Total Annual KWh Consumed		
1	Classrooms	Grd&1st	F32T8 bulb- 4ft	485	2	Light Switch	60	28.62	89,279		
2	Offices	Grd&1st	F32T8 bulb- 4ft	10	2	Light Switch	60	0.59	1,841		
3	Offices	Grd&1st	F32T8 bulb- 4ft	12	3	Light Switch	60	1.07	3,332		
4	Offices	Grd&1st	CFT40W 0	19	2	Light Switch	60	1.37	4,268		
5	Offices	Grd&1st	FU31T8/6 Utube	3	2	Light Switch	60	0.18	552		
6	Bathrooms	Grd&1st	F32T8 bulb- 4ft	27	2	Light Switch	60	1.59	4,970		
7	Bathrooms	Grd&1st	CFQ26W 0	15	2	Light Switch	60	0.75	2,340		
8	Hallways	Grd&1st	F32T8 bulb- 4ft	97	2	Light Switch	60	5.72	17,856		
9	Hallways	Grd&1st	CFQ26W 0	78	2	Light Switch	60	3.90	12,168		
10	Hallways	Grd&1st	CFT40W 0	11	2	Light Switch	60	0.79	2,471		
11	Hallways	Grd&1st	FU31T8/6 Utube	7	2	Light Switch	60	0.41	1,289		
12	Storage/Misc	Grd&1st	CFT40W 0	54	2	Light Switch	60	3.89	12,131		
13	Storage/Misc	Grd&1st	CFQ26W 0	3	2	Light Switch	60	0.15	468		
14	Storage/Misc	Grd&1st	CFT40W 0	27	2	Light Switch	60	1.94	6,065		
15	Storage/Misc	Grd&1st	FU31T8/6 Utube	10	2	Light Switch	60	0.59	1,841		
16	Receptionist	1st	F32T8 bulb- 4ft	12	3	Light Switch	60	1.07	3,332		
17	Conference Rm.	1st	F32T8 bulb- 4ft	6	3	Light Switch	60	0.53	1,666		
18	Health Suite	1st	CFQ26W 0	2	2	Light Switch	60	0.10	312		
19	Health Suite	1st	F32T8 bulb- 4ft	6	3	Light Switch	60	0.53	1,666		
20	Health Suite	1st	CFT40W 0	3	2	Light Switch	60	0.22	674		
21	Library	1st	F32T8 bulb- 4ft	52	2	Light Switch	60	3.07	9,572		
22	Library	1st	CFQ26W 0	28	2	Light Switch	60	1.40	4,368		
23	Library	1st	CFT40W 0	2	2	Light Switch	60	0.14	449		
24	Gym	Grd	MH750 W	16	1	Light Switch	60	7.33	22,863		
25	Auditorium	1st	CFQ26W 0	13	2	Light Switch	60	0.65	2,028		
26	Auditorium	1st	MH175 W	25	1	Light Switch	60	3.20	9,984		
27	Auditorium	1st	H90 W	25	1	Light Switch	60	2.25	7,020		
28	Boiler Room	Grd	F32T8 bulb- 4ft	16	2	Light Switch	60	0.94	2,945		
29	Cafeteria	Grd	F32T8 bulb- 4ft	38	2	Light Switch	60	2.24	6,995		
30	Cafeteria	Grd	CF42W 0	7	1	Light Switch	60	0.34	1,048		
31	Kitchen	Grd	CFQ26W 0	8	2	Light Switch	60	0.40	1,248		
32	Kitchen	Grd	FU31T8/6 Utube	19	2	Light Switch	60	1.12	3,498		
33	Stairwell	Grd&1st	F32T8 bulb- 4ft	8	2	Light Switch	60	0.47	1,473		
34	Stairwell	Grd&1st	CFQ26W 0	18	2	Light Switch	60	0.90	2,808		
35	Computer Area	Grd	F32T8 bulb- 4ft	24	2	Light Switch	60	1.42	4,418		
36	Computer Area	Grd	CFT40W 0	5	2	Light Switch	60	0.36	1,123		
43	Break Room	1st	F32T8 bulb- 4ft	3	2	Light Switch	60	0.18	552		
44	Break Room	1st	CFQ26W 0	5	2	Light Switch	60	0.25	780		
45	Break Room	1st	F32T8 bulb- 4ft	8	3	Light Switch	60	0.71	2,221		
40	Break Room Exterior Wall Pack	1st	CFT40W 0	1	2	Light Switch	60	0.07	225		
41	Lights	Grd	CFQ26W 0	14	2	Timer	50	0.70	1,820		
42	Exterior Pole Lights	Grd	MH175 W	6	1	Timer	50	0.77	1,997		
43	Exterior Pole Lights	Grd	MH320 W	7	1	Timer	50	2.07	5,369		
-	-	-	TOTALS	1,235			-	84.99	263,325		

Existing Facilities Program Lighting Form:	Existing Cont	trol Legend	INSTRUCTIONS Coding Legend			
Performance Based	LS	Light Switch	CF	Compact Fluorescent	I	
Project Number: 98515.11R-001.268	PS	Photo sensor	F	Fluorescent, linear	LED	
Facility Name: Broadmeadow Elementary School	ТМ	Timer	н	Halogen	МН	
Project Manager Luke Jacques		Motion/Occupa ncy Sensor	HPS	High Pressure Sodium	MV	
Date: 8/20/2011 Square Footage (ft2) 87570	EC	Emergency Control	l	Incandescent	QL	

Line	ECM		Auditional	FIOOI	Area Description		E-INSTAI		FIE FIXL	FIE FIXE GODE	Fre watts /	Fie kwy/	Daseime	
Integer	(Туре	ECM CODE	For two ECMs in		Description of location that matches	Lux	hrs/ week	control device	# of existing	TypWattage Table	Watts/Fixt from	(Pre Watts/Fixt) *	Existing annual	(PreFixt
integer			1			Lux			0		I	(····- ··· ···
1	ECM	MS		Grd&1st	Classrooms		60	LS	485	F42ILL	59	28.62	3,120	89,279
	ECM	MS		Grd&1st	Offices		60	LS	10	F42ILL	59	0.59	3,120	1,841
3	ECM	MS		Grd&1st	Offices		60	LS	12	F43ILL	89	1.07	3,120	3,332
4	ECM	MS		Grd&1st	Offices		60	LS	19	CFT40/2-L	72	1.37	3,120	4,268
5	ECM	MS		Grd&1st	Offices		60	LS	3	FU2LL/T2	59	0.18	3,120	552
6	ECM	MS		Grd&1st	Bathrooms		60	LS	27	F42ILL	59	1.59	3,120	4,970
/	ECM	MS		Grd&1st	Bathrooms		60	LS	15	CFQ26/2-L	50	0.75	3,120	2,340
8	ECM	MS		Grd&1st	Hallways		60	LS	97	F42ILL	59	5.72	3,120	17,856
9	ECM	MS		Grd&1st	Hallways		60	LS	78	CFQ26/2-L	50	3.90	3,120	12,168
10	ECM	MS		Grd&1st	Hallways		60	LS	11	CFT40/2-L	72	0.79	3,120	2,471
11	ECM	MS		Grd&1st	Hallways		60	LS	7	FU2LL/T2	59	0.41	3,120	1,289
12	ECM	MS		Grd&1st	Storage/Misc		60	LS	54	CFT40/2-L	72	3.89	3,120	12,131
13	ECM	MS		Grd&1st	Storage/Misc		60	LS	3	CFQ26/2-L	50	0.15	3,120	468
14	ECM	MS		Grd&1st	Storage/Misc		60	LS	27	CFT40/2-L	72	1.94	3,120	6,065
15	ECM	MS		Grd&1st	Storage/Misc		60	LS	10	FU2LL/T2	59	0.59	3,120	1,841
16	ECM	MS		1st	Receptionist		60	LS	12	F43ILL	89	1.07	3,120	3,332
17	ECM	MS		1st	Conference Rm.		60	LS	6	F43ILL	89	0.53	3,120	1,666
18	ECM	MS		1st	Health Suite		60	LS	2	CFQ26/2-L	50	0.10	3,120	312
19	ECM	MS		1st	Health Suite		60	LS	6	F43ILL	89	0.53	3,120	1,666
20	ECM	MS		1st	Health Suite		60	LS	3	CFT40/2-L	72	0.22	3,120	674
21	ECM	DL		1st	Library		60	LS	52	F42ILL	59	3.07	3,120	9,572
22				1st	Library		60	LS	28	CFQ26/2-L	50	1.40	3,120	4,368
23				1st	Library		60	LS	2	CFT40/2-L	72	0.14	3,120	449
24	ECM	RB	MS	Grd	Gym		60	LS	16	MH400	458	7.33	3,120	22,863
25				1st	Auditorium		60	LS	13	CFQ26/2-L	50	0.65	3,120	2,028
26	ECM	RL		1st	Auditorium		60	LS	25	MH100	128	3.20	3,120	9,984
27	ECM	RL		1st	Auditorium		60	LS	25	H90/1	90	2.25	3,120	7,020
28	ECM	ТМ		Grd	Boiler Room		60	LS	16	F42ILL	59	0.94	3,120	2,945
29				Grd	Cafeteria		60	LS	38	F42ILL	59	2.24	3,120	6,995
30				Grd	Cafeteria		60	LS	7	CFL42	48	0.34	3,120	1,048
31				Grd	Kitchen		60	LS	8	CFQ26/2-L	50	0.40	3,120	1,248
32				Grd	Kitchen		60	LS	19	FU2LL/T2	59	1.12	3,120	3,498
33	ECM	PS		Grd&1st	Stairwell		60	LS	8	F42ILL	59	0.47	3,120	1,473
34	ECM	PS		Grd&1st	Stairwell		60	LS	18	CFQ26/2-L	50	0.90	3,120	2,808
35	ECM	MS		Grd	Computer Area		60	LS	24	F42ILL	59	1.42	3,120	4,418
36	ECM	MS		Grd	Computer Area		60	LS	5	CFT40/2-L	72	0.36	3,120	1,123
37	ECM	MS		1st	Break Room		60	LS	3	F42ILL	59	0.18	3,120	552
38	ECM	MS		1st	Break Room		60	LS	5	CFQ26/2-L	50	0.25	3,120	780
39	ECM	MS		1st	Break Room		60	LS	8	F43ILL	89	0.71	3,120	2,221
40	ECM	MS		1st	Break Room		60	LS	1	CFT40/2-L	72	0.07	3,120	225
	ECM	PS		Grd	Exterior Wall Pack Lights		50	TM	14	CFQ26/2-L	50	0.70	2,600	1,820
	ECM	RB		Grd	Exterior Pole Lights		50	TM	6	MH100	128	0.77	2,600	1,997
43	ECM	RB		Grd	Exterior Pole Lights		50	ТМ	7	MH250	295	2.07	2,600	5,369
								Total Pre Fixt.	1,235		Total Pre kW	85	kWh Consumed	263,325
											Light Intensity	0.971	Usage Intensity	3.01
											-ignt intensity	Watt/ ft2		KWh / ft2

Existing	g Facilities P	rogram Lighting Form:							Existing Con				Compact		
			Performance Based						LS	Light Switch		CF	Fluorescent Fluorescent,	1 leks	Emitting
	Dec	in at Nama.	00545 145 004 000						PS	Photosensor		F	linear	D	Diode
	Pro	ject Name:	98515.11R-001.268						т 	Timer		H	Halogen High Pressure	Me	I Halide ercury
	Fac	ility Name:	Broadmeadow Elementary School						MS	Motion Sensor Emergency		HPS	Sodium		apor
Date:	8/20/2011	Project Manager	Luke Jacques						EC	Control			Incandescent	QL Indu	uction
		ſ	T	PRE	-INSTALLATION			I	1	T		Р	OST-INSTALLA		
Line Item	ECM	Type of ECM Code (Refer to ECM Code Worksheet)	Additional ECM Code (if applicable)	Floor	Area Description	Light Reading (Record if ECM)	Usage	Baseline Annual Hours Existing	Existing Control	Pre Fixt. No.	Pre Fixt Code	Post Fixt No. # of	Pre Fixt Code (Refer to Wattable Table Worksheet)	Post Watts/ Fixt	Prop t Weekly
Integer line number	(Type 'ECM" if applied)	ECM CODE Worksheet Link	For two ECMs in one line item	Floor fixture is on	Description of location that matches site map	Lux (link to light standards)	hrs/ week	annual hours for the usage group	Pre-installation control device	# of existing fixtures	<u>TypWattage</u> <u>Table Link</u>	existing fixtures	TypWattage Table	Watts/Fixt from Wattage Table	
Ex.		RB		10	Men's Room		5	3,000	Light Switch	3	F44T12	3	F42T8	59	
1	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Classrooms	-	60	3,120	LS	485	F42ILL	485	F42ILL	59	48
2	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Offices	-	60	3,120	LS	10	F42ILL	10	F42ILL	59	48
3	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Offices	-	60	3,120	LS	12	F43ILL	12	F43ILL	89	48
4	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Offices	-	60	3,120	LS	19	CFT40/2-L	19	CFT40/2-L	72	48
5	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Offices	-	60	3,120	LS	3	FU2LL/T2	3	FU2LL/T2	59	48
6	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Bathrooms	-	60	3,120	LS	27	F42ILL	27	F42ILL	59	48
7	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Bathrooms	-	60	3,120	LS	15	CFQ26/2-L	15	CFQ26/2-L	50	48
8	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Hallways	-	60	3,120	LS	97	F42ILL	97	F42ILL	59	48
9	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Hallways	-	60	3,120	LS	78	CFQ26/2-L	78	CFQ26/2-L	50	48
10	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Hallways	-	60	3,120	LS	11	CFT40/2-L	11	CFT40/2-L	72	48
11	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Hallways	-	60	3,120	LS	7	FU2LL/T2	7	FU2LL/T2	59	48
12	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Storage/Misc	-	60	3,120	LS	54	CFT40/2-L	54	CFT40/2-L	72	48
13	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Storage/Misc	-	60	3,120	LS	3	CFQ26/2-L	3	CFQ26/2-L	50	48
14	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Storage/Misc	-	60	3,120	LS	27	CFT40/2-L	27	CFT40/2-L	72	48
15	ECM	MS - Install Motion Sensors	#N/A	Grd&1st	Storage/Misc	-	60	3,120	LS	10	FU2LL/T2	10	FU2LL/T2	59	48
16	ECM	MS - Install Motion Sensors	#N/A	1st	Receptionist	-	60	3,120	LS	12	F43ILL	12	F43ILL	89	48
17	ECM	MS - Install Motion Sensors	#N/A	1st	Conference Rm.	-	60	3,120	LS	6	F43ILL	6	F43ILL	89	48
18	ECM	MS - Install Motion Sensors	#N/A	1st	Health Suite	-	60	3,120	LS	2	CFQ26/2-L	2	CFQ26/2-L	50	48
19	ECM	MS - Install Motion Sensors	#N/A	1st	Health Suite	-	60	3,120	LS	6	F43ILL	6	F43ILL	89	48
20	ECM	MS - Install Motion Sensors	#N/A	1st	Health Suite	-	60	3,120	LS	3	CFT40/2-L	3	CFT40/2-L	72	48
21	ECM	DL - Delamping	#N/A	1st	Library	-	60	3,120	LS	52	F42ILL	12	F42ILL	59	60
22	-	#N/A	#N/A	-	-	-	-	-	-	-	-	0	-	0	0.

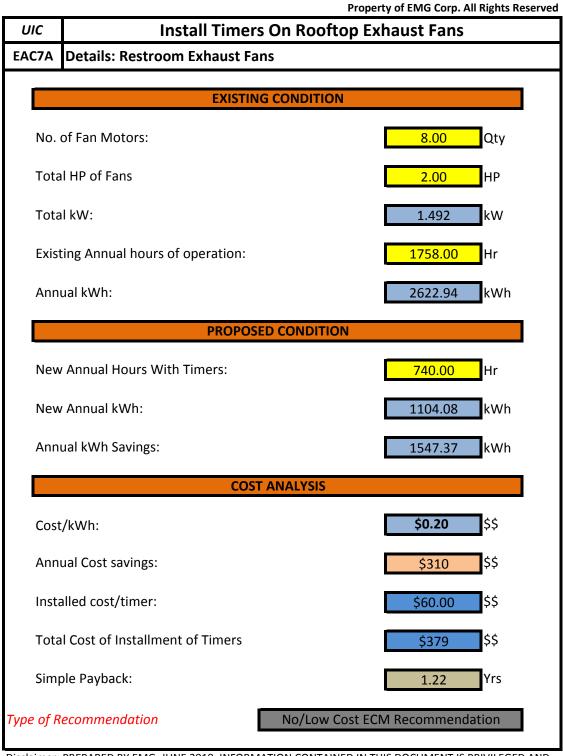
Proposed kW Annual kWh roposed kly Hours Saved Control Saved Pre (PreFixt #*PreWatts/Fixt * Baseline Hrs) -(PostFixt#*PostWatts/Fixt * Proposed Hours) kW/Space -Post-installation hrs / wk control device Post kW/Space Motion Sensor 0.26 765 48.00 MS 0.00 17,856 MS 48.00 0.00 368 48.00 MS 0.00 666 48.00 MS 0.00 854 48.00 MS 0.00 110 48.00 MS 994 0.00 48.00 MS 0.00 468 MS 48.00 0.00 3,571 MS 48.00 0.00 2,434 MS 48.00 0.00 494 48.00 MS 0.00 258 MS 0.00 48.00 2,426 MS 94 48.00 0.00 48.00 MS 0.00 1,213 MS 48.00 0.00 368 MS 48.00 0.00 666 48.00 MS 0.00 333 48.00 MS 0.00 62 48.00 MS 333 0.00 48.00 MS 0.00 135 MS 60.00 2.36 7,363 0.00 0.00 0

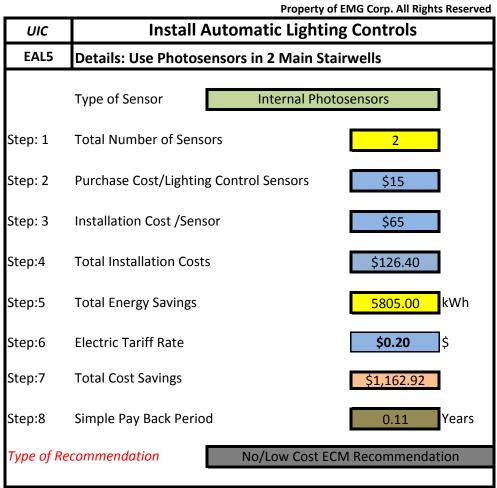
PRE-INSTALLATION POST-INSTALLATION												Р	OST-INSTALLA	TION	1			
Line Item	ECM (Type 'ECM" if	Type of ECM Code (Refer to ECM Code Worksheet)	Additional ECM Code (if applicable)	Floor Floor	Area Description	Light Reading (Record if ECM) Lux	Usage	Baseline Annual Hours Existing annual hours	Existing Control	Pre Fixt. No. # of existing	Pre Fixt Code	Post Fixt No. # of existing		Watts/Fixt	Proposed Weekly Hours	Proposed Control	kW Saved Pre kW/Space -	Annual kWh Saved (PreFixt #*PreWatts/Fixt * Baseline Hrs) -
line number	applied)	ECM CODE Worksheet Link	For two ECMs in one line item	fixture is on	matches site map	(link to light standards)	hrs/ week	for the usage group	control device	fixtures	Table Link	fixtures	TypWattage Table	from Wattage Table	e hrs / wk	control device	Post kW/Space	PostFixt#*PostWatts/Fixt * Proposed Hours)
23	-	#N/A	#N/A	-	-	-	-	-	-	-	-	0	-	0	0.00		0.00	0
24	ECM	RB - Replace Bulb	MS - Install Motion Sensors	Grd	Gym	-	60	3,120	LS	16	MH400	16	QL165	170	35.00	MS	4.61	17,913
25	-	#N/A	#N/A	-	-	-	-	-	-	-	-	0	-	0	0.00		0.00	0
26	ECM	#N/A	#N/A	1st	Auditorium	-	60	3,120	LS	25	MH100	25	MH100	128	48.00	MS	0.00	1,997
27	ECM	#N/A	#N/A	1st	Auditorium	-	60	3,120	LS	25	H90/1	25	H90/1	90	48.00	MS	0.00	1,404
28	ECM	TM - Install Timers	#N/A	Grd	Boiler Room	-	60	3,120	LS	16	F42ILL	16	F42ILL	59	48.00	MS	0.00	589
29	-	#N/A	#N/A	-	-	-	-	-	-	-	-	0	-	0	0.00		0.00	0
30	-	#N/A	#N/A	-	-	-	-	-	-	-	-	0	-	0	0.00		0.00	0
31	-	#N/A	#N/A	-	-	-	-	-	-	-	-	0	-	0	0.00		0.00	0
32	-	#N/A	#N/A	-	-	-	-	-	-	-	-	0	-	0	0.00		0.00	0
33	ECM	PS - Install Photo Sensor	#N/A	Grd&1st	Stairwell	-	60	3,120	LS	8	F42ILL	8	F42ILL	59	48.00	MS	0.00	295
34	ECM	PS - Install Photo Sensor	#N/A	Grd&1st	Stairwell	-	60	3,120	LS	18	CFQ26/2-L	18	CFQ26/2-L	50	48.00	MS	0.00	562
35	ECM	MS - Install Motion Sensors	#N/A	Grd	Computer Area	-	60	3,120	LS	24	F42ILL	24	F42ILL	59	48.00	MS	0.00	884
36	ECM	MS - Install Motion Sensors	#N/A	Grd	Computer Area	-	60	3,120	LS	5	CFT40/2-L	5	CFT40/2-L	72	48.00	MS	0.00	225
37	ECM	MS - Install Motion Sensors	#N/A	1st	Break Room	-	60	3,120	LS	3	F42ILL	3	F42ILL	59	48.00	MS	0.00	110
38	ECM	MS - Install Motion Sensors	#N/A	1st	Break Room	-	60	3,120	LS	5	CFQ26/2-L	5	CFQ26/2-L	50	48.00	MS	0.00	156
39	ECM	MS - Install Motion Sensors	#N/A	1st	Break Room	-	60	3,120	LS	8	F43ILL	8	F43ILL	89	48.00	MS	0.00	444
40	ECM	MS - Install Motion Sensors	#N/A	1st	Break Room	-	60	3,120	LS	1	CFT40/2-L	1	CFT40/2-L	72	48.00	MS	0.00	45
41	ECM	PS - Install Photo Sensor	#N/A	Grd	Exterior Wall Pack Lights	-	50	2,600	ТМ	14	CFQ26/2-L	14	CFQ26/2-L	50	40.00	PS	0.00	364
42	ECM	RB - Replace Bulb	#N/A	Grd	Exterior Pole Lights	-	50	2,600	ТМ	6	QL55	6	QL55	55	40.00	ТМ	0.44	1,310
43	ECM	RB - Replace Bulb	#N/A	Grd	Exterior Pole Lights	-	50	2,600	ТМ	7	QL85	7	QL85	85	40.00	ТМ	1.47	4,131
									Total Pre Fixt.	1,120		1,080	Total Post kW	2,535.00		Total kW Saved	8.88	71,495.94

$E \ n \ e \ r \ g \ y \ A \ u \ d \ i \ t$

- **R**EPORT -----

98515.11R-001.268


APPENDIX G: ECM CALCULATIONS


Property of EMG Corp, All Rights Reserved

UIC	Lower Domestic Hot water Temperature Set-Poir	nts
EAD1	Details: Reduce Water Temp. for Building From 132 Deg. F to 120 Deg. F	
Type of W	ater Heater Fuel Natural Gas (Select)	
Insert No. o	f Domestic Hot Water Heaters To Be Reset:	1 Qty
Estimated/	Actual Annual Domestic Water Heating Fuel Supply:	6,000 Therms
Name Plate	System Effficiency:	80.00%
Supply Wat	er Temperature:	<mark>65</mark> °F
Current Wa	ter Heater Setpoint Temperature:	<mark>132</mark> °F
The Propos	ed Water Heater Setpoint Temperature:	<mark>120</mark> °F
	New Annual Energy Consumption At Supply With Reduced Domestic Hot Water re Set Point	4925.37 Therms
Estimated <i>i</i>	Annual Heating Fuel Savings:	1074.63 Therms
Average Co	st/Unit of Heating Fuel \$\$/ Therms	\$1.08
Estimated <i>i</i>	Annual Cost Savings:	\$1,162.28 \$ \$
Does The H	oT Water Heater Have A Manual Temperature Control?	Yes
Installed Co	ost of All Programmable Aquastat:	\$0.00 \$\$
Simple Pay	pack:	0.00 years
	Type of Recommendation No/Low Cost ECM Recommendation	

Disclaimer: PREPARED BY EMG. MARCH 2011, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

Disclaimer: PREPARED BY EMG. JUNE 2010, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG Corp. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

Disclaimer: PREPARED BY EMG. JUNE 2010, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

-				of EMG Corp, All Rights Reserved						
UIC	Replace	High Flow Faucet A	erators To Low Flow Faucet Aerators							
EAP2	Details: Replace 2.2 GPM Aerators w/ 1 G	PM Aerators in All Bathroor	m Sinks							
No. of Res	sidents	10	Number of Occupied Days/Week (Max 7) 5							
	KITCHEN FAUCETS		BATHROOM FAUCETS							
Do You W	/ant To Replace Kitchen Faucets	No (Select)	Do You Want To Replace Bathroom Faucets	Yes (Select)						
Total Nun	nber of Faucet Aerators To Be Replaced	0	Total Number of Faucet Aerators To Be Replaced	14						
GPM of E	xisting Faucet Aerators	3.2 GPM	GPM of Existing Faucet Aerators	2.2 GPM						
GPM of P	roposed Faucet Aerator	2.2 GPM	GPM of Proposed Faucet Aerator	1 GPM						
Estimated	Number of Uses Per Day	0	Estimated Number of Uses Per Day 10							
Estimated	Time Per Faucet Use	0.50 Mins	Estimated Time Per Faucet Use	0.16 Mins						
	(ater Savings From Kitchen Faucets uses/day/person for 365 days a year)	0.00 kGal	Annual Water Savings From Kitchen Faucets (Assuming 3 uses/day/person for 213 days a year)	2.88 kGal						
	WATER & ENERGY SAVING CALCU	LATION	COST SAVING CALCULATION	N						
Select Tyj	pe of Water Heater Fuel:	Natural Gas (Select)	Heating Fuel Tariff	\$1.082 \$\$						
DHW plar	nt efficiency:	80%	Water Tariff (\$/1000 Gal)	\$9.00 \$\$						
Equivalen	t Heating Energy savings:	3742.53 kBtu	Annual Cost Savings In Form of Water	\$26 \$\$						
Equivalen	t Heating Fuel Savings:	37.43 Therms	Annual Energy Savings From Water Heater	\$40 \$\$						
	'ater Savings uses/day/person for 365 days a year)	2.88 kGal								
		COST BENE	FIT ANALYSIS							
Estimated	d Total Annual Cost Savings	<mark>\$66</mark> \$\$	Estimated Total Installation Cost	\$111 \$\$						
Simple Pa	yback Period	1.67 Years	Type of Recommendation No/Low Cost	ECM Recommendation						

Disclaimer: PREPARED BY EMG. March 2011, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

Property of EMG Corp, All Rights Reserved

UIC	Reduce Light Levels By Delamping of Lamps									
EAL8	Details: Remove excess lamps	above perimeter bulkhead in Main								
No of Incan	descent lamps to be removed	0 Qty								
	r Fluroscent Lamps To Be Remove res To Be Delamped	d <u>80</u> Qty <u>0</u> Qty								
	Cost of Delamping									
Delamping	or Charge of \$65/hr) of Incandescent Lamps (\$65/30 Lamp op Location at a 8-10' Ceiling Height)	s) \$0.00 \$								
	of Linear Fluroscent Lamps (\$65/20) ap Location at a 8-10' Ceiling Height)	Lamps) \$260.00 \$								
Install Paral	polic Reflectors?	No								
	s To be Installed With Reflectors?	0								
	Total Estimated Dela	mping Cost \$205 \$								
Total Energ	y Saved	7363.00 kWh								
Existing Ele	ctric Tariff per kWH	\$0.20								
Estimated A	nnual Cost Savings	\$1,475.04								
Estimated F	eturn on Investment	0.14 Years								
Type of Re	commendation No	/Low Cost ECM Recommendation								

Disclaimer: PREPARED BY EMG. MARCH 2011, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

Property of EMG Corp, All Rights Reserved

UIC	Convert Gas Pilot Stoves To Electronic Ignition Stoves										
EAA5	Details: Add to Kite	hen Stove	an	d Oven Ur	nit						
Cost of conve	vicion from standing gas n	ilat ta alastra	nia	ignition for o		tovo					
COST OF CORVE	ersion from standing gas p		nic	Ignition for of	ne si		1				
					_	\$158.00					
	umber of gas stoves in the	project:				1					
Total cost of	conversion for all stoves:					\$158.00					
Transfer the	following information fror	n the Survey:									
а	Estimated total annual n	Estimated total annual natural gas savings/Range: 34.00 therms/yr									
b	Estimated Savings From	All Ranges				34.00	therms/yr				
с	Cost/therm of natural ga	s:				\$1.08	\$/therm				
Estimated an	nual cost savings through	conversion:					_				
		therms		cost/therm	_	savings					
		34.00	x	1.08	=	\$36.77	\$/yr				
Calculate pay	back period:										
		\$158.00	171	\$36.77] = [4 20	Lurc .				
		\$120.0U	/	י י.טכג	1 - L	4.30	yrs				
Type of Reco	nmendation	No/Low	Со	st ECM Recon	nme	endation]				

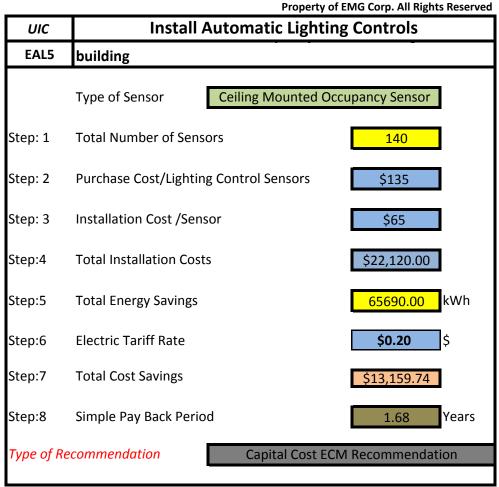
Disclaimer: PREPARED BY EMG. JUNE 2010, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

	Property of EMG Corp, All Rights Reser			
UIC		Install Energy Save	ers on Vending, Snack Machi	nes
EAC8	Details: Soda Ma	achine in Faculty Lounge		
No. of V	ending Machines:	1.00 Qty	No. of Chilled Water Fountains:	0.00 Qty
No. of Sr	nack Machines	0.00 Qty		
			ld Beverage Vending Machines)	
Estimate	d Annual kWh Cons	sumption of Vending Machin	e:	3500.00 kWh
Estimate	d Annual kWh of Ve	ending Machine With VendM	liser:	1890.00 kWh
Total an	nual kWh savings:			1610.00 kWh
Total An	nual kWh Savings fo	or All Vending Machines:		1610.00 kWh
			Cooling Machines	
Estimate	d Annual kWh Cons	sumption of Beverage Coolin	g Machine:	2300.00 kWh
Estimate	ed Annual kWh of Co	ooling Machine With Cooler	Miser:	1610.00 kWh
Total An	nual kWh savings:			690.00 kWh
Total An	nual kWh Savings Fe	or All Cooling Machines:		0.00 kWh
		Snack V	ending Machines	
Estimate	ed Annual kWh Cons	sumption of Individual Snack	Machine:	873.60 kWh
Estimate	d Annual kWh of In	dividual Snack Machines Wit	th VendMiser:	366.91 kWh
Total An	nual kWh savings:			506.69 kWh
Total An	nual kWh Savings F	or All Water Fountain Cooler	s:	0.00 kWh
		C	ost Analysis	
Total est	timated annual kW	h savings withEnergy Miser	5:	1610.00 kWh
Cost/kW	'n:			\$0.20
Estimate	ed Cost of Vendmise	r/ Vending Machine:		\$200
Estimate	ed Cost of Coolermis	er/ Water cooler:		\$190
Estimate	ed Cost of Vendmise	r/ Snack Machine:		\$70
Estimate	ed total installed co	st of all VendMisers:		\$200
Estimate	ed Total Annual Ele	ctricity Savings Using Vendi	ngMisers and CoolerMisers:	\$323
Simple P	ayback:			0.62 years
Type of I	Recommendation	No/Low C	ost ECM Recommendation	

Disclaimer: PREPARED BY EMG. MARCH 2011, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

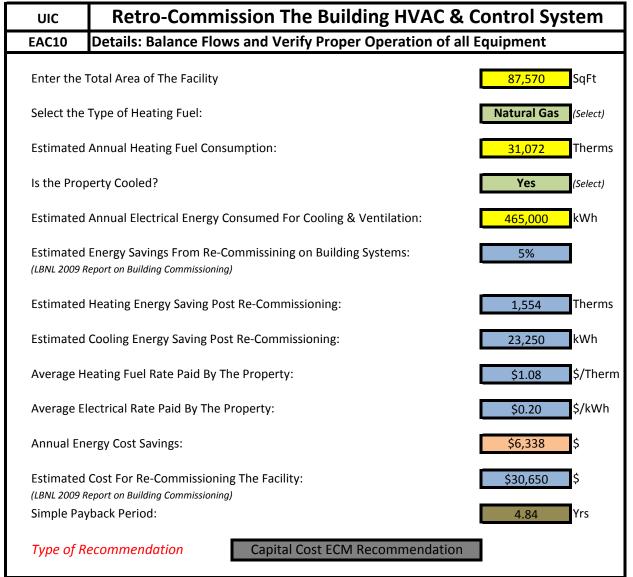
		Property of EMG Corp. All Rights Reserved
UIC	Install Outside Air (OA) Temperature Reset Controls for	or Hot Water Boilers
EAC5	Details: Utilize Outside Air Reset in Central BMS HVAC Control System	
Select Type	of Heating Fuel Natural Gas (Select)	
Estimate A	tual Heating Fuel Used Annually	31,072 Therm
Total Estim	ated Energy Savings By Use of OA Temperature Reset Control:	<mark>10%</mark> %
Estimated	New Heating Fuel Consumption With Improved System Efficiency:	27964.80 Therm
Estimated <i>i</i>	Annual Heating Fuel Savings:	3107.20 Therm
Cost Per Ui	it of Heating Fuel: \$\$/ Therm	\$1.08 \$\$
Estimated <i>i</i>	Annual Cost Savings:	\$3,361
Installed co	st of a OA Reset controller:	\$645
Simple Pay	pack:	0.19 years
Type of Red	No/Low Cost ECM Recommendation	

Disclaimer: PREPARED BY EMG. MARCH 2011, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.


UIC	Install Low Flow Rest		erty of EMG Corp, All Rights Reserved
EAP4	Details: Replace Urinals in all Male Bathrooms v		
LAF	Details. Replace Officials in an Male Bathoonis V		ixtures
	ECM FOR DETERMINING WATER SAVINGS IN CO	MMERCIAL PRO	PERTIES
Number of Number of			
Number of	Occupied Days Per Week (Max 7)		5
Number of	EUrinals To Be Retrofitted Water Closets To Be Retrofitted ere Closets With Separate Flush Tank ntial Type)		4 0 0
	Restroom Usage/Individual/Day	1	(Select)
	Urinal Water Savings		
Do You Wa	ant To Make Any Changes To The Urinals?	(Select)	Yes
Existing Ga GPF of Pro	Existing Use of Urinal/Day/Man Illons Per Flush Ratings For Urinal Flushes posed Urinal Flush Valve** 'Energy Act Mandates 1.0GPF Max on Urinols)	(Select)	80% 3.50 GPF 1.00 GPF
Estimated	Annual Water Savings From Urinal		102.00 kGal
	Water Closet Water Saving	gs	
	Vater Closets ater Closet Need To Be Retrofitted?	(Select)	No
Existing Ga	illons Per Flush Ratings For Water Closet Flushes		3.40 GPF
(If No; Then Or	isting Water Closet Being Replaced? If The Flush Volve Would Be Replaced With Dual Flush Retrofit Kit) kless WaterClosets	(Select)	No
GPF of Pro	posed Dual Flush- Water Closet Valve* equires All Flushes Not To Exceed 1.6 GPF)	Solid Waste (20%) Liquid Waste (80%)	3.40 GPF
Estimated	Annual Water Savings From Male Users		19.42 kGal
Estimated	Annual Water Savings From Female Users		97.10 kGal
Total Wate	er Savings From Water Closets		0.00 kGal
	Water & Cost Saving Calculat	ions	
	ings Calculation	h	
	ngs By The Use of Low Flow Water Closet Flush Valves	/Yr	0.00 kgal
	ngsBy The Use of Low Flow Urinal Flush Valves/ Yr Ial Water Savings in kgal		102.00 kgal
	gs Calculations		102.00 Kgai
	er Tariff Rate (\$/1000Gal)		\$9.00 \$\$
	Cost Savings From Water		\$918 \$\$
	Cost of Retrofit		
	eplacing Existing Urinal Fixture With A Low Flow Fixture		\$700.50 \$\$ (Includes Labor)
Per Unit)	eplacing Existing Flush Valves With Low Flow - Dual Flu	ish Valves (\$80	\$0.00 \$\$ (Includes Labor)
	Waste And Down For Solid Waste) Total Cost For Retrofit		\$700 \$\$
Simple Pay	Back Period		0.76 Yrs
Type of Re	commendation No/Low Cost ECN	1 Recommendat	ion

Disclaimer: PREPARED BY EMG. JUNE 2010, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

Property of EMG Corp, All Rights Reserved


UIC	Property of EMG Corp, All Rights Reservent							
EAC4	C4 Details: on (2) 10 Hp Boiler Hot Water Recirculation Pumps							
Install VFD	on			Cost/kWh:		\$0.20	l	
Install VFD onNo. of Motors:2Individual Motor HP:10Load Factor:85%Full load input power:7.25			No. of VFD To Be Installed Motor Efficeincy: Annual hrs of operation: Cost of new motor & VFD (Excluding Installation) Estimated Labor cost:			2 87.50% 2500.00 \$3,550.00 \$1,684.50		
% Load	% hours	Hours	VFD Factor	Full Load kW	Fraction of full load power (kW) with VFD	kW Reduction with VFD	kWh Savings with VFD	
0%	0%	-	-	7.25	0.00	7.25	-	
10%	1%	25	0.03	7.25	0.22	7.03	176	
20%	2%	50	0.07	7.25	0.51	6.74	337	
30%	2%	50	0.13	7.25	0.94	6.30	315	
40%	5%	125	0.21	7.25	1.52	5.73	716	
50%	20%	500	0.30	7.25	2.17	5.07	2,536	
60% 70%	20% 20%	500 500	0.41	7.25 7.25	2.97 3.91	4.28	2,138 1,667	
80%	15%	300	0.54	7.25	4.93	2.32	870	
90%	10%	250	0.83	7.25	6.01	1.23	308	
100%	5%	125	1.00	7.25	7.25	-	-	
Fotal	570	2,500	1.00	1.25	1.25		9,062	
Total Instalation Cost:\$10,469Average kW Reduction:5.50Annual kWh Savings Per Motor:9062.19		per VFD		Of Motor Configuration Motors Run Parallel/Seri	es			
Fotal Savin	igs From All	Motors:	18124.39	kWh (tota	al for all VFDs)			
Estimated annual cost savings: \$3,631		\$\$						
Simple payback: 2.88			years					
ype of Reco	ommendatior	n	Capital Cost	ECM Recor	nmendation			

Disclaimer: PREPARED BY EMG. MARCH 2011, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

Disclaimer: PREPARED BY EMG. JUNE 2010, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

Property of EMG Corp, All Rights Reserved

Disclaimer: PREPARED BY EMG. JUNE 2010, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

Replace Inefficient Heating Plant UIC Details: Add one 3,200 MBH/97% Eff. High Efficiency Condensing Boiler as Primary EAH 1A Natural Gas (Select) Select Type of Heating Fuel No. of Heating Units To Be Replaced: 1 Qty Estimated Actual Heating Fuel Used For Heating: 31,072 Therms Existing Average Annual Heating Plant Efficiency: 85.6% % Improved/New Heating Plant Efficiency: 94.0% % 28,295 Therms Estimated New Heating Fuel Consumption With Improved Efficiency: Therms Estimated Heating Fuel Savings: 2,777 Average Cost/Unit For Heating Fuel: \$\$/ Therms \$1.08 \$\$ \$3,003 \$\$ Estimated Annual Cost Savings: \$\$ \$150 Estimated Annual O&M Savings: Removal of Existing Heating Equipment Cost: \$0 Installation Labor Cost of Installing New Equipment: \$10,000 Material Cost of New Equipment: \$76,800 Overhead, Profit, and Contingency Costs: \$0 Estimated Cost of New Heating Plant (or Cost of Improvement) \$\$ \$86,800 Estimated Total Cost For Replacing All Heating Plants: \$86,800 Simple Payback: 27.53 years **Capital Cost ECM Recommendation** *Type of Recommendation*

Property of EMG Corp, All Rights Reserved

Disclaimer: PREPARED BY EMG. MARCH 2011, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

			of EMG Corp, All Rights Reserved
		ion Levels in Attic	
EAE3 Details: Add Insulation to Ceiling	of Auditorium, Cafeteria, and Gyr	n	
	ENTER EXISTING CO	NDITION	
Select Climatic Zone Related To The Property Locatio	n: Zone-5 (Select)	ASHRAE 90.1 Attic- Insulation Requirement:	R-38
Enter Total Surface Area Under Consideration:	13518.00 Sq.Ft	Existing Net Effective R-Value: (Sq.Ft deg F/btu)	20
Proposed Type of Insulation To Be Added:	Batt Insulation (Select)	Proposed Insulation Recommendation: Pa	select)
Recommended Level of Insulation To Be Added:	R-30	Proposed Net Effective R-Value: (Sq.Ft deg F/btu)	40
	ENTER CLIMATIC & SYS	ITEM DATA	
Annual Cooling Degree Days (CDD):	1199.00	Estimated Annual Cooling Plant Efficiency (EER):	11.00 EER
Annual Heating Degree Days (HDD):	5469.00	Estimated Annual Heating Plant Efficiency: %	80.00 %
WINTER		SUMMER	
Select Type of Heating Fuel Natural Gas	(Select)	Is the Property Cooled ? Yes	(Select)
Annual Conduction Losses From Existing Insulation	88715.93 kBtu	Annual Conduction Losses From Existing Insulation	19449.70 Kbtu
Annual Conduction Losses From Existing Insulation Annual Conduction Losses From Proposed Insulation		Annual Conduction Losses From Existing Insulation	19449.70 Kbtu 9724.85 kBtu
-	44357.97 kBtu	C C	
Annual Conduction Losses From Proposed Insulation	44357.97 kBtu 44357.97 kBtu	Annual Conduction Losses From Proposed Insulation	9724.85 kBtu
Annual Conduction Losses From Proposed Insulation Savings In Conduction Losses After Adding Insulation	44357.97 kBtu 44357.97 kBtu	Annual Conduction Losses From Proposed Insulation Savings In Conduction Losses After Adding Insulation	9724.85 kBtu 9724.85 kBtu
Annual Conduction Losses From Proposed Insulation Savings In Conduction Losses After Adding Insulation Estimated Total Annual Input Heating Energy Savings	44357.97 kBtu 44357.97 kBtu 554.47 Therms	Annual Conduction Losses From Proposed Insulation Savings In Conduction Losses After Adding Insulation Estimated Total Annual Input Cooling Energy Savings	9724.85 kBtu 9724.85 kBtu 884.08 kWh
Annual Conduction Losses From Proposed Insulation Savings In Conduction Losses After Adding Insulation Estimated Total Annual Input Heating Energy Savings Cost of Heating Fuel/Unit: Therms	44357.97 kBtu 44357.97 kBtu 554.47 Therms \$1.08 \$\$	Annual Conduction Losses From Proposed Insulation Savings In Conduction Losses After Adding Insulation Estimated Total Annual Input Cooling Energy Savings Cost of Electricity/Unit Annual Cooling Cost Savings	9724.85 kBtu 9724.85 kBtu 884.08 kWh \$0.20 \$\$
Annual Conduction Losses From Proposed Insulation Savings In Conduction Losses After Adding Insulation Estimated Total Annual Input Heating Energy Savings Cost of Heating Fuel/Unit: Therms	44357.97 kBtu 44357.97 kBtu 554.47 Therms \$1.08 \$\$ \$599.70 \$\$	Annual Conduction Losses From Proposed Insulation Savings In Conduction Losses After Adding Insulation Estimated Total Annual Input Cooling Energy Savings Cost of Electricity/Unit Annual Cooling Cost Savings	9724.85 kBtu 9724.85 kBtu 884.08 kWh \$0.20 \$\$
Annual Conduction Losses From Proposed Insulation Savings In Conduction Losses After Adding Insulation Estimated Total Annual Input Heating Energy Savings Cost of Heating Fuel/Unit: Therms Annual Heating Cost Savings	44357.97 kBtu 44357.97 kBtu 554.47 Therms \$1.08 \$\$ \$599.70 \$\$ COST ANALY:	Annual Conduction Losses From Proposed Insulation Savings In Conduction Losses After Adding Insulation Estimated Total Annual Input Cooling Energy Savings Cost of Electricity/Unit Annual Cooling Cost Savings	9724.85 kBtu 9724.85 kBtu 884.08 kWh \$0.20 \$\$ \$177.11 \$\$

Disclaimer: PREPARED BY EMG. MARCH 2011, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

Property of EMG Corp, All Rights Reserved

		IG Corp, All Rights Reserved				
UIC	Replace High Intensity Discharge Lamp (HID) with Ind	uction Lighting				
EAL9	Details: Outside Pole Lights, Gym Lights, and Auditorium Lights					
Step:1	Number of 60-100W HID Lamps Replaced by 40W Induction	6				
	Number of 100-150W HID Lamps Replaced by 70W Induction	0				
	Number of 150-200W HID Lamps Replaced by 85W Induction	7				
	Number of 200-250W HID Lamps Replaced by 120W Induction	0				
	Number of 250-300W HID Lamps Replaced by 165W Induction	0				
	Number of 300-400W HID Lamps Replaced by 250W Induction	16				
	Number of 1000W HID Lamps Replaced by (2)300W Induction Lamps	0				
	Installation Cost Analysis					
Step:2	Subtotal Cost of 40 Watt Induction Self Ballast Retrofit	\$810				
Step:3	Subtotal Cost of 70 Watt Induction Retrofit	\$0				
Step:4	Subtotal Cost of 85 Watt Induction Retrofit	\$2,695				
Step:5	Subtotal Cost of 120 Watt Induction Retrofit	\$0				
Step:6	Subtotal Cost of 165 Watt Induction Retrofit	\$0				
Step:7	Subtotal Cost of 250 Watt Induction Retrofit	\$8,880				
Step:8	Subtotal Cost of 300 Watt Induction Retrofit	\$0				
Step:9	Total Cost For Retrofit	\$9,784				
	Energy & Cost Saving Analysis					
Step:10	Estimated Annual Energy Savings	20369.00 kwh				
Step:11	Current Electric Price Per kWh	\$0.20 \$				
Step:12	Estimated Annual Cost Savings	\$4,081				
Step:13	Existing Annual Usage (For O&M Savings) Proposed Annual Usage Post Retrofit (For O&M Savings)	<mark>1440</mark> hrs 1440 hrs				
	Estimated Annual O&M Savings	\$186 \$\$				
Step:14	Total Estimated Annual Cost Savings (Energy & O&M Savings)	\$4,267 \$\$				
Step:15	Simple Pay back Period	2.29 Yrs				
Type of Recommendation Capital Cost ECM Recommendation NOTE: Induction Lamps contain 3 to 4 times the life of HID lamps where significant Operation and Maintanence Savings are attained through minimizing frequency of bulb and ballast replacements						

Disclaimer: PREPARED BY EMG. JUNE 2010, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDERED PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

UIC	Replace Existing RTU	Js with High Efficien	cy Units with V	ariable Speed C	Dil Free Compress	ors		
EAH9	Details: Install High Efficiency units at ti	s: Install High Efficiency units at time of replacement						
	Please input the total number of	RTUss in the building:	1.00	Cost/kWh:	\$0.20			
Existing RTUs			N	lew RTUs with Oil free	variable Speed Compresso	ors		
lease inp kisting k\ stimated	ew RTUs enter the total tons (capacity) of the RTUs: 350.00 nput the existing EER the RTUs: 10.00 kW/ton: 1.20 ed annual operating hours: 400.00 annual kWh consumption for the RTUs: 168000.00 		Please enter the capacity of the new High Eff. RTUs 350.00 Please input the design achievable EER of the new RTUs: 24.00 New kW/ton: 0.50			0.50		
isting ar	initial kwn consumption for the KTOS:		variable speed con	npressors:	gn Eff. RTUS with oil free	70000.00		
		Multi-Mod design Er	ergy Saving Resu					
		h savings with new RTUs: otal annual cost savings:		98,000 \$19,632.43	Type of Recomment Capital Cost ECM Reco			
	Estimated	Annual O&M Savings:		\$588.97				
	Total Annu	al Cost Savings:		\$20,221	remental Cost Vs Standard	efficiency units:		
	Estimated	cost to install new RTUs		\$440,000		\$105,00		
		back (years):		21.76	ple Payback (years) for pr	emium recovery: 5.35		

Disclaimer: PREPARED BY EMG. JUNE 2010, INFORMATION CONTAINED IN THIS DOCUMENT IS PRIVILEGED AND CONFIDENTIAL "TRADE SECRET" AND IS THE SOLE PROPERTY OF EMG CORP. THIS MATERIAL MUST BE CONSIDEREI PRIVELEDGED AND CONFIDENTIAL BY ALL PARTIES PRIVY.

$E \ n \ e \ r \ g \ y \ A \ u \ d \ i \ t$

- **R** E P O R T -----

98515.11R-001.268

APPENDIX H: Supporting Documents

THIS APPENDIX IS INTENTIONALLY LEFT BLANK.

